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SI* (MODERN METRIC) CONVERSION FACTORS 
APPROXIMATE CONVERSIONS TO SI UNITS 

Symbol When You Know Multiply By To Find Symbol 
LENGTH 

in inches 25.4 millimeters mm 
ft feet 0.305 meters m 
yd yards 0.914 meters m 
mi miles 1.61 kilometers km 

AREA 
in2 square inches 645.2 square millimeters mm2 
ft2 square feet 0.093 square meters m2 
yd2 square yard 0.836 square meters m2 
ac acres 0.405 hectares ha 
mi2 square miles 2.59 square kilometers km2 

VOLUME 
fl oz fluid ounces 29.57 milliliters mL 
gal gallons 3.785 liters L 
ft3 cubic feet 0.028 cubic meters m3 
yd3 cubic yards 0.765 cubic meters m3 

NOTE: volumes greater than 1,000 L shall be shown in m3 
MASS 

oz ounces 28.35 grams g 
lb pounds 0.454 kilograms kg 
T short tons (2,000 lb) 0.907 megagrams (or “metric ton”) Mg (or “t”) 

TEMPERATURE (exact degrees) 
°F Fahrenheit 5 (F-32)/9 Celsius °C or (F-32)/1.8 

ILLUMINATION 
fc foot-candles 10.76 lux lx 
fl foot-Lamberts 3.426 candela/m2 cd/m2 

FORCE and PRESSURE or STRESS 
lbf poundforce 4.45 newtons N 
lbf/in2 poundforce per square inch 6.89 kilopascals kPa 

APPROXIMATE CONVERSIONS FROM SI UNITS 
Symbol When You Know Multiply By To Find Symbol 

LENGTH 
mm millimeters 0.039 inches in 
m meters 3.28 feet ft 
m meters 1.09 yards yd 
km kilometers 0.621 miles mi 

AREA 
mm2 square millimeters 0.0016 square inches in2 
m2 square meters 10.764 square feet ft2 
m2 square meters 1.195 square yards yd2 
ha hectares 2.47 acres ac 
km2 square kilometers 0.386 square miles mi2 

VOLUME 
mL milliliters 0.034 fluid ounces fl oz 
L liters 0.264 gallons gal 
m3 cubic meters 35.314 cubic feet ft3 
m3 cubic meters 1.307 cubic yards yd3 

MASS 
g grams 0.035 ounces oz 
kg kilograms 2.202 pounds lb 
Mg (or “t”) megagrams (or “metric ton”) 1.103 short tons (2,000 lb) T 

TEMPERATURE (exact degrees) 
°C Celsius 1.8C+32 Fahrenheit °F 

ILLUMINATION 
lx lux 0.0929 foot-candles fc 
cd/m2 candela/m2 0.2919 foot-Lamberts fl 

FORCE and PRESSURE or STRESS 
N newtons 2.225 poundforce lbf 
kPa kilopascals 0.145 poundforce per square inch lbf/in2 
*SI is the symbol for International System of Units. Appropriate rounding should be made to comply with Section 4 of ASTM E380. 
(Revised March 2003) 
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EXECUTIVE SUMMARY 

During the first phase of this project, the research team evaluated whether enough constructed 
separated bicycle lanes (SBLs) existed to support a statistical safety-based analysis. Following 
this assessment and confirmation of the number of candidate sites, the research team scheduled 
data collection for spring 2020. Due to the pandemic, the data collection effort was limited to 
identification of preexisting databases and physical site assessments using aerial photos and an 
interactive panoramic street viewing application. 

The objective of this study was to determine a crash modification factor (CMF) that estimates the 
safety effect of converting a traditional bicycle lane to an SBL. The SBL is characterized by a 
buffer with a vertical element located between the motor vehicle (MV) and bicycle lanes. The 
safety analysis is based on bicycle-related crashes. 

DATABASE DEVELOPMENT 

Due to travel restrictions in 2020, the research team developed a database that included 
information that could be compiled from existing bicycle count data, road characteristic 
information, and crash data available from the target jurisdictions. Locations that did not have 
these three critical features could not be included; however, the team allowed some variability 
for how much bicycle count data could be used and potentially extrapolated to surrounding 
facilities. 

Study Sites 

The team developed a second matching database that included street-level information, such as 
traffic operations (one-way versus two-way roads for bicycles and MVs), varying traffic control 
at bounding intersections, parking presence and type, and roadway cross section. 

Based on the identified site requirements, the following candidate locations were identified: 

• Austin, TX. 
• Cambridge, MA. 
• Denver, CO. 
• San Francisco, CA. 
• Seattle, WA. 

Data for Austin and Denver were reserved for validation purposes. The analysis focused on 
Cambridge, San Francisco, and Seattle. 

Exposure and CMF Models 

Due to the limited number of bicycle counts, the team developed statistical models to estimate 
bicycle exposure at the sites included in the database that did not have available bicycle volumes. 
These exposure models were developed so that each of the three target cities could be 
independently assessed. 
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RESULTING CMFs 

Following the exposure model development, the research team then developed CMFs that 
estimated the following scenarios: 

• Converting traditional bicycle lanes to SBLs with flexible posts (flexible posts) 
(CMF = 0.50). 

• Converting flush buffered bicycle lanes to SBLs with flexible posts (CMF = 0.44). 

• Converting traditional or flush buffered bicycle lanes to SBLs with flexible posts 
(CMF = 0.47). 

• Converting traditional bicycle lanes to SBLs with a blend of flexible posts and other 
vertical elements (CMF = 0.64). 

• Converting flush buffered bicycle lanes to SBLs with a blend of flexible posts and other 
vertical elements (CMF = 0.57). 

• Converting traditional or flush buffered bicycle lanes to SBLs with a blend of flexible 
posts and other vertical elements (CMF = 0.60). 

Possibly, other bicycle crashes may have occurred and were not reported. The research team was 
unable to incorporate these unreported crashes into the scope of this study.
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CHAPTER 1. INTRODUCTION 

INTRODUCTION 

In 2020, the United States experienced 938 bicycle fatalities due to roadway-related crashes.(1) 
This high number of bicycle-involved collisions emphasizes the need to place priority on 
analyzing and enhancing the safety of bicyclists. In recent years, transportation agencies have 
constructed a variety of bicycle lane configurations, including separated bicycle lanes (SBLs). 
An SBL is also sometimes referred to as a “protected bicycle lane.” 

SBLs provide a bicycle lane that is separated from the adjacent motor vehicle (MV) lanes by 
both a buffer and a vertical element between the MV lanes and the bicycle lane. The SBL is a 
newer treatment, and the safety and operational effects of the SBLs are not fully known. 

Project Objective 

This report summarizes the development of crash modification factors (CMFs) based on SBLs 
for facilities in Cambridge, MA; San Francisco, CA; and Seattle, WA, and then tested for 
facilities in Austin, TX, and Denver, CO. Including bicycle exposure in safety assessments is 
necessary because the number of bicycles that use the roadway can be expected to directly 
contribute to the number of crashes that occur on that facility. 

Study Approach 

The annual average daily bicycle volume (AADB) is one of the most common terms used to 
represent bicycle exposure. Unfortunately, AADB is not a common variable that is widely 
collected, and locations where transportation agencies do acquire the AADB information may be 
limited to seasonal or short-term count values. Because the purpose of this study was to evaluate 
the safety performance of SBLs, the researchers needed to assess known bicycle count data and 
contrast those data with other site and road characteristics, with a goal of identifying surrogate 
variables that may be used to collectively estimate the bicycle count information for roadway 
facilities with similar characteristics. These models are known as exposure models (see chapters 
4, 5, and 6 for additional information on the exposure models). 

An initial stage of this project included data collection and analysis that would enable the 
research team to estimate bicycle exposure that could then be used in the development of CMFs. 
The way people traveled, worked, and used their bicycles for leisure and commuting purposes 
dramatically shifted in 2020 due to the COVID-19 pandemic. Initially, the data collection for this 
SBL project was to be based on field data to account for exposure; however, the research team 
had to modify the data sources for the project and target cities that did have some available 
bicycle counts. Instead of field visits, the research team used online mapping visual tools to 
document the road conditions for the database on this project. (See chapter 3 for additional 
information regarding the data collection and database development.) Data from 2020 or later 
were excluded from this study because of the altered usage pattern that occurred due to the 
COVID-19 outbreak. 
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This report begins with chapter 1 (this chapter), which introduces the project purpose. Chapter 2 
then summarizes published literature regarding known safety performance of bicycle facilities 
with a focus on SBLs. Chapter 3 provides a brief overview of the data collection process used for 
this analysis. Chapters 4, 5, and 6 review exposure model estimation for Cambridge, 
San Francisco, and Seattle, respectively. Chapter 7 then summarizes the estimation efforts for 
developing CMFs for SBLs. The body of the report concludes with conclusions in chapter 8, 
appendixes, and references. 
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CHAPTER 2. LITERATURE REVIEW 

The construction of various lane configurations that accommodate bicycles along an urban 
collector or arterial can help to remove cyclists from sidewalks or from travel lanes where the 
bicycles must share the lane with MVs. Bicycle lanes, as an example, can reduce conflicts 
between pedestrians and bicyclists (for sidewalk locations) and between MVs and bicycles (for 
shared travel lane scenarios at nonintersection locations). The bicycles and MVs, however, must 
still interact at intersection locations. 

Intuitively, providing a dedicated bicycle lane should result in fewer and less severe bicycle-
related crashes, yet the research related to bicycle lanes provides mixed results.(1,2) The inclusion 
of a buffer between the MV lane and the bicycle lane provides additional lateral separation 
between the bicycle and adjacent MVs. Enhancing this design by introducing a vertical element 
that physically separates the bicycles and the MVs and converts the bicycle facility to an SBL 
further improves cyclist comfort. 

Recently, two studies specifically focused on bicycle lane performance. The report, 
Recommended Bicycle Lane Widths for Various Roadway Characteristics (NCHRP Report 766), 
provides guidance on recommended bicycle lane widths and associated roadway 
characteristics.(1) The authors of that report noted that a buffered lane provides advantages over a 
standard or a wide bicycle lane. The Federal Highway Administration (FHWA) further evaluated 
the safety performance of existing SBLs in appendix C of its Separated Bicycle Lane Planning 
and Design Guide.(3) The authors noted, however, that the inconsistent nature of the available 
data—in particular, bicycle volume data—created difficult analysis issues for SBL facilities 
where exposure is a key element related to these facilities’ overall safety. 

Many additional factors can contribute to the safety effects of bicycle lanes, including the 
following examples: 

• The corridor speed limit. 
• The frequency of driveways. 
• The lateral placement of roadside objects. 
• The buffer separation between vehicle lanes and the bicycle lane. 
• The number and width of neighboring lanes. 
• The width of the actual bicycle lane. 
• The number and type of intersections. 
• The volume of MVs (passenger cars and trucks), bicycles, and pedestrians. 
• The fact that the construction of a bicycle facility is likely to attract more cyclists to the 

corridor location. 

The role of the corridor as part of a larger street network must also be considered to capture the 
context of a facility, including items such as bicycle route alternatives, facility connectivity, and 
operational consistency. 

The following section provides brief definitions of bicycle lanes and SBLs and then further 
defines the objective that was the focus of this study. 
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DEFINITIONS AND COMMON TERMS 

The distinction between a bicycle lane, a bikeway, and an SBL facility merits clarification. This 
section defines these facilities and, in doing so, highlights why the SBL is uniquely different than 
other bicycle facilities. 

Bicycle Lane 

The use of bicycle lanes in the United States dates back several decades. The 2012 American 
Association of State Highway and Transportation Officials (AASHTO) Guide for the 
Development of Bicycle Facilities, fourth edition, defines a bicycle lane as: 

A portion of roadway that has been designated for preferential or exclusive use by 
bicyclists by pavement markings and, if used, signs. The roadway portion is intended for 
one-way travel, usually in the same direction as the adjacent traffic lane, unless designed 
as a contraflow lane.(4) 

Bikeway 

AASHTO’s 2012 guide further defines a bikeway as: 

A generic term for any road, street, path, or way which in some manner is specifically 
designated for bicycle travel, regardless of whether such facilities are designated for the 
exclusive use of bicycles or are to be shared with other transportation modes.(4) 

Separated Bicycle Lane 

The SBL is also often referred to as a “cycle track” or a “protected bikeway” or “bicycle lane.” 
A simple description by Bicycle East Bay in Oakland, CA, refers to SBL facilities as sidewalks 
for bicycles.(5) The unique characteristics of this facility include lateral physical separation or 
protection of the bicycle lane from the adjacent MV lanes. The physical separation of an SBL is 
accomplished with a vertical element that may include a variety of applications such as 
consistently spaced flexible posts (flexible posts) that do not fully limit access. The physical 
separation could also restrict adjacent MV access with continuous longitudinal barriers. 

The SBL may be one-way or two-way and can be positioned on the left or right side of roadways 
that are also one-way or two-way; however, the most common applications tend to locate the 
SBL on the right side of the road in the direction of travel (figure 1). 
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Source: FHWA. 

Figure 1. Photo. SBLs for both directions of travel. 

AASHTO’s 2012 guide does not include an SBL as a recommended bicycle facility, but this type 
of design option is addressed in recent documents by FHWA and the National Association of 
City Transportation Officials (NACTO).(3,6) 

The 2015 FHWA Separated Bicycle Lane Planning and Design Guide defines an SBL as: 

An exclusive facility for bicyclists that is located within or directly adjacent to the 
roadway and that is physically separated from motor vehicle traffic with a vertical 
element. Separated bicycle lanes are differentiated from standard and buffered bicycle 
lanes by the vertical element.(3) 

The 2012 NACTO Urban Bikeway Design Guide uses the term cycle track and defines it as: 

A cycle track is an exclusive bicycle facility that combines the user experience of a 
separated path with the on-street infrastructure of a conventional bicycle lane. A cycle 
track is physically separated from motor traffic and distinct from the sidewalk.(6) 

A key component that distinguishes the SBL from other bicycle facilities is the use of a physical 
separation that includes some type of vertical element. This vertical element is one of several 
factors that should be considered when assessing the safety performance of an SBL facility. 

SBL CHARACTERISTICS TO CONSIDER 

This literature review focused on the safety aspects of SBLs located in North America. The 
section that reviews SBL characteristics to consider includes a summary of the varying SBL 
features. This review also includes a review of the known safety effects of the SBLs. 
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The implementation of an SBL can include several elements that collectively contribute to the 
safety performance of a facility. The following factors should be deliberated when considering 
deployment of SBLs to a specific facility: 

• Unique geometric configurations. 
• Directional considerations and associated dimensions. 
• Vertical elements. 
• Contextual applications. 
• Intersection-specific issues. 
• Segment (nonintersection)-specific issues. 

Unique Geometric Configurations 

The unique design of urban arterial and collector corridors, where SBLs are most often located, 
must be carefully balanced with the adjacent land use. Many of these corridors include attractors 
that increase the likelihood of commuting and recreational cyclists. These locations require 
specific assessments on how to accommodate vulnerable road users while maintaining the 
appropriate level of corridor operations. 

Directional Considerations and Associated Dimensions 

For SBL facilities, the bicycle lane may be one-way or two-way, depending on the demands of 
the facility, though the use of contraflow bicycle lanes is generally discouraged for two-way 
streets. The use of contraflow bicycle lanes at streets with one-way MV activity may be 
acceptable in the following situations: 

• The contraflow bicycle lane helps substantially reduce out-of-direction travel. 

• Wrong-way bicycle activity exists at the facility, and the contraflow bicycle lane will 
accommodate these bicycles. 

• The contraflow lane provides access to a high-use destination property. 

• The number of intersecting streets, alleys, or driveways is limited. 

• The contraflow lane bicycle entrance and exit are safe and convenient.(7) 

In addition to the one-way or two-way SBL facilities or MV lanes, the design must also consider 
the lateral placement of the SBLs. The width of the road cross section and available space for the 
SBL buffer are also critical elements of the design. 

In addition, any characteristics that are critical for traditional bicycle lanes will generally be of 
concern for SBL applications. For example, extreme vertical grades will often require bicycle 
lane width adjustments.(1,3) If a continuous facility that does not permit same-direction passing is 
constructed, the managing transportation agency can expect to observe reduced compliance that 
will likely affect safety. 
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Table 1 summarizes common SBL directional configurations, companion bicycle lane and buffer 
width recommendations, and additional considerations that should be included when assessing 
the selection and placement of SBL configurations. As noted in this table, many of the options 
will further complicate bicycle, pedestrian, and MV interactions at intersection locations. The 
values shown in table 1 are as cited in the noted references; however, each agency may use 
widths that vary from those shown. 

Table 1. Recommended SBL directions and dimensions.(2,5) 

SBL Type 
MV 

Lanes 
Lateral 

Placement 
Bicycle Lane 

Width (ft) 
Buffer 

Width (ft) 
Additional 

Considerations 
One-way One-way • Generally right-

side conditions 
(preferred)* 

• Left side (under 
unique 
circumstances) 

7 preferred 
5 minimum 

3 minimum Avoid using minimum 
bicycle lane width where 
same-direction bicycle 
passing is expected 

One-way Two-way Both sides (left 
and right) 

7 preferred 
5 minimum 

3 minimum Avoid using minimum 
bicycle lane width where 
same-direction bicycle 
passing is expected 

One-way Two-way Central median Varies based 
on median 
configuration 

Varies based 
on median 
configuration 

Fewer turning conflicts 
but creates challenges at 
intersections 

Two-way One-way Right side 
typical* 

12 Varies Creates challenges at 
intersections 

Two-way Two-way Right side 
typical* 

12 Varies Fewer turning conflicts 
but creates challenges at 
intersections; used if 
space cannot be 
achieved to 
accommodate separate 
SBLs on each side 

*Left-side SBL applications are considered when:(3,6) 
• Route has high transit demand. 
• Left side has fewer access points than right side. 
• Land use on left side is more likely cyclist destination. 
• Right side of road has on-street parking. 

Vertical Elements 

A wide variety of potential vertical elements may be used to separate the bicycle lane from 
adjacent MV lanes and sidewalks. Table 2 summarizes several of the vertical elements observed 
in the published literature.(2,5,7) Many of the potential vertical elements can be generally separated 
into a continuous treatment category, whereby the bicycle traffic is distinctly separated from the 
adjacent MV or pedestrian traffic for the length of the nonintersection SBL section. As an 
alternative, several less rigid or flexible vertical elements enable periodic gaps in the physical 
separation. Though the continuous vertical element may generally be preferred, there may also 
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be a need to blend these two treatment types at locations where some access must be maintained 
for other road users. 

Table 2. Example SBL vertical elements to consider. 

Vertical Element Source 
On-street parking (24-h posted) Continuous at nonintersection locations(6,8) 
Raised curb or median Continuous at nonintersection locations(6,8) 
Concrete barriers Continuous at nonintersection locations(3) 
Raised lane Continuous at nonintersection locations(3) 
Landscaped buffers Continuous at nonintersection locations(8) 
Tubular markers (bollards) or flexible 
posts 

Flexible with limited gaps in vertical elements at 
nonintersection locations(6) 

Planters Flexible with limited gaps in vertical elements at 
nonintersection locations(3,6) 

Parking stops Flexible with limited gaps in vertical elements at 
nonintersection locations(3) 

Combination of treatments Blended vertical treatments(3) 

Contextual Applications—Transit and Pedestrian Considerations 

As indicated in table 1, the placement and orientation of SBL facilities are often influenced by 
corridor user demands. Transit operations and supporting facilities and pedestrian demand are 
two contextually specific characteristics that are likely to occur at urban roadways where SBL 
facilities are also considered. 

In addition to increased bus volumes along an urban corridor, the location of transit lanes, bus 
stops, or transit stations can directly influence the recommended placement of SBL facilities. As 
noted in table 1, left-side placement of an SBL may be appropriate if the corridor has high transit 
demand and uses the right side of the road to conduct transit operations.(6) In many locations, the 
SBL is located to the right of active bus lanes or parking lanes. This type of configuration 
requires a pedestrian to cross the SBL to access the bus or parked vehicles. 

Some agencies prohibit the placement of bicycle lanes between the curb and a parking lane. For 
example, the Wisconsin Department of Transportation does not allow this configuration and 
notes that these bicycle lane configurations restrict visibility for both the drivers of MVs and 
bicyclists at intersection or driveway locations.(7) 

Intersection-Specific Issues 

The transition from a nonintersection SBL location to an intersection configuration presents 
many challenges. This location requires some level of interaction between all road users and can 
introduce confusing configurations that road users do not always interpret correctly. 
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Monsere et al. defined SBL intersection configurations as three categories.1 

• Mixing zones where bicycles and turning vehicles are required to share the same space. 

• Turning zones where the through bicycle maneuver is shifted away from the curb and 
located to the left or right of turning MVs. 

• Signalization where bicycles and turning MVs receive separate signalized movements. 

Following execution of a series of surveys for study sites at five locations, Monsere et al. 
(determined that the mixing zones are more readily understood by cyclists and drivers.(9) 
Researchers at Portland State University in Oregon extended their research by evaluating user 
“comfort” curves to assess suitable intersection configurations.(9) That study focused on the 
mixing and turning zone configurations. The goal of the Portland State University research effort 
was to determine design recommendations based on the comfort levels of the bicyclists and their 
interaction with other road users.(10) Rather than assessing crash data, the study used a 
combination of video, surveys, and microsimulation activities. Due to the available study sites, 
the research primarily focused on one-way configurations and right-turn maneuver interactions. 

Segment (Nonintersection)-Specific Issues 

In addition to the transit issues previously noted, SBL nonintersection operations are more 
straightforward than their intersection counterparts. Locations where midblock access points are 
permitted, however, can compromise SBL operations, introduce conflicts, and create visibility 
issues. At locations where on-street parking is permitted, the parking should be limited to 
immediately upstream and downstream of the access point to enhance sight distance. In addition, 
signage should clearly indicate to road users that the SBL operations have priority over driveway 
operations.(3)  

 
1Monsere, C. 2017. “Contextual Guidance at Intersections for Protected Bicycle Lanes.” NACTO C4C Conference 
Call presentation, unpublished. 
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Summary of Key Variables to Consider 

A variety of issues need to be considered when assessing the safety of an SBL facility. Table 3 
summarizes these potential elements. 

Table 3. SBL variables to consider. 

Data Need Potential Elements 
Crash data • Total number of crashes. 

• Number of fatal and injury crashes (specific consideration to who is 
injured: MV drivers or passengers, bicyclists, or pedestrians). 

Exposure • ADT or peak-hour volumes for MVs (passenger cars and trucks), 
bicycles, and pedestrians. 

• Land use and driveway types (as potential volume surrogates). 
• The increase in bicyclists due to the placement of SBL facilities is 

also an important exposure consideration. 

Year of 
construction 

SBLs constructed earlier than 2010 may not be suitable if exposure 
information and crash data are not available. 

Width of 
buffer 

Locations with on-street parking should be further assessed to determine 
actual and effective buffer widths. 

Vertical 
element 

• Flexible posts, bollards, and light poles. 
• Curb or raised median. 
• Landscaping and planters. 
• Concrete (zebra/armadillo) bumps, buttons, and parking stops. 
• Parked cars. 
• Grade. 
• Concrete barrier, guardrail, and fence. 

Length (miles) Primarily for nonintersection SBL assessment. 
Intersection 
channelization 
and traffic 
control 

• Primarily for intersection SBL assessment. 
• Islands (traditional, bend-in, bend-out, turn lanes, etc.). 
• MV and bicycle signalization. 
• Signage and pavement markings. 

Lighting Street light presence, placement, and type 
Corridor 
information 

• Speed limit. 
• Driveway density. 
• Number, type, and width of lanes. 
• Number and type of intersections. 
• Street network configuration. 
• Vehicle parking restriction hours. 
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Data Need Potential Elements 
Roadway 
facility type 

• Urban arterial (two-way and one-way). 
• Urban collector (two-way and one-way). 
• Urban local street (two-way and one-way). 

SBL facility 
configuration 

• Right side, one-way or two-way. 
• Left side, one-way or two-way. 
• Middle, two-way. 

Unique SBL 
features 

• Truck aprons. 
• Mixing zones or elevated SBLs at driveways/crossings. 
• Green markings. 
• Bicycle facility continuity and operational consistency. 

ADT = average daily traffic. 

KNOWN SAFETY EFFECTS OF SBLS 

Within the last decade, many U.S. transportation agencies have implemented SBLs in urban 
regions to help promote the bicycle as a viable transportation option. Though empirical safety 
data analysis related to SBLs in the United States continues to evolve, the widespread European 
application and safety evaluation of these facilities have suggested several potential safety 
benefits that are identified in guidance documents by FHWA and NACTO. This section 
summarizes these expected safety benefits, describes the North American safety studies that have 
occurred in recent years in greater detail, reviews the study design and analysis methods used for 
these studies, and then summarizes these findings. 

Safety Benefits 

In 2015, FHWA published a guidance document entitled Separated Bicycle Lane Planning and 
Design Guide.(3) This document specifically notes the following four expected safety benefits of 
implementing an SBL: 

• Physical separation will reduce crash frequency and severity while also increasing cyclist 
comfort. 

• Additional protection helps to promote use by providing peace of mind to novice cyclists. 

• Strategic applications of SBLs can be integrated into the bicycle network at locations 
with the greatest need. 

• Designs can help enhance pedestrian safety by shortening crossing distances and 
accommodating additional pedestrian refuge at crossing locations. 
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NACTO’s Urban Bikeway Design Guide refers to SBLs as “cycle tracks” and further identifies 
the following safety benefits: 

• Provides protected, dedicated space for cyclists. 

• Reduces cyclist fear of overtaking vehicles. 

• When contrasted to traditional bicycle lanes, minimizes safety concerns related to 
“dooring” where cyclists are struck by the opening doors of parked cars.(6) 

These identified safety benefits are intuitive, but confirming that these benefits apply to SBL 
applications in the United States is necessary. The North American safety research is 
summarized in the following section. 

Related Safety Research 

Because the number of SBL locations in the United States has been limited, much of the 
published literature related to the safety effect of these facilities has focused on northern Europe, 
where bicycle facilities of this type have existed for many years. Many of the European facilities 
are not located on multilane roadways and, therefore, have different contextual configurations 
than the U.S. and Canadian SBL applications. This difference suggests that the use of crash 
information from other countries may be informative but not directly applicable to the United 
States. A 2013 paper by Thomas and DeRobertis reviews the literature associated with urban 
SBLs.(11) The authors identified 23 papers that extended as far back as 1987 and noted that 22 of 
the papers were based on European facilities. Thomas and DeRobertis did compile the following 
general findings that may help transportation professionals in the United States determine key 
safety-related issues to consider: 

• One-way SBLs tend to be safer than two-way SBLs. 
• Constructing SBLs reduces the number of collisions and injuries. 

A 2011 study by Lusk et al. examined six SBL locations in Montreal, QB, Canada, and 
contrasted each location with up to two reference streets where bicycle facilities were not 
present.(12) The original intent of the study was to focus on one-way and two-way SBL facilities, 
but the researchers determined that all the Montreal locations available to study were two-way, 
and, therefore, they ultimately focused on this configuration. Lusk et al. determined the crash 
rate for the SBLs to be 10.5 crashes per million bicycle-km. They also found the associated 
injury crash rate to be 8.5 injuries per million bicycle-km. The authors cautioned that the small 
sample size of six locations limited opportunities to determine unique factors that contributed to 
safety performance. The study corridors included entire SBL segments and did not separate 
intersection versus nonintersection crashes. Lusk et al. concluded that two-way SBL facilities 
appear to reduce or maintain crash and injury rates compared to streets without similar facilities. 

In 2013 study, Lusk et al. evaluated 19 SBL facilities in the United States.(13) The researchers 
assessed crash data that extended from 0.3 yr to 8.6 yr. At some locations, exposure information 
was not available, so the researchers estimated the average daily bicycle count. The 19 study 
locations included sites in California, Colorado, Florida, Massachusetts, Minnesota, New York, 
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Oregon, and Vermont. The physical characteristics—such as, one-way versus two-way, one side 
versus two sides, and type of physical separation—varied. Study corridor lengths varied from 
0.16 km to 4.83 km. The researchers evaluated 55 crashes between MVs and bicycles. The study 
resulted in a crash rate of 2.3 crashes per million bicycle-km. The authors noted that some 
potential limitations of the study included the limited amount of available crash data associated 
with SBL facilities and a need to estimate or adjust bicycle counts for consistent periods. 

Another 2013 study evaluated bicycling injury patterns in the Canadian cities of Vancouver, BC, 
and Toronto, ON.(14) For this study, the researchers used a case crossover design whereby the 
experimental design used injured cyclists as their own controls. The researchers recruited 
690 study participants from local hospitals where they reported bicycle-related crash injuries. Of 
the associated crashes, 201 occurred at intersection locations, and 478 occurred at 
nonintersection locations. Though the research team evaluated a wide variety of road 
configurations and associated elements, they concluded that features that separate cyclists from 
MVs and pedestrians are associated with substantially lower-risk bicycle crashes. 

In a 2013 study, Goodno et al. evaluated innovative bicycle facilities in Washington, DC.(15) As 
part of this study, the researchers evaluated an SBL facility on 15th Street by examining 
before–after crash data and conducting 6-h conflict studies at intersection locations. At the time 
of the study, only 10–14 mo of after crash data were available, so the authors could not draw 
definitive conclusions but did provide some observations. The number of crashes that involved 
bicycles increased after the SBL configuration was implemented. The authors noted, however, 
that approximately 40 percent of the cyclists were observed to disobey traffic signals, with many 
of them running the red lights. The researchers further noted that the local jurisdiction continues 
to monitor the crash trends at these locations and recommended adding bicycle traffic signal 
heads to help clarify cyclist expectations at these locations. 

Three studies evaluated perceived and observed SBL safety.(15–16) The researchers did not have 
sufficient crash data to assess before and after conditions, so they used user survey data from 
144 h of video (consisting of 12,900 bicycles) to assess cyclists’ behavior at the SBL intersection 
study locations in Austin; Chicago, IL; Portland; San Francisco; and Washington, DC.(15,16)  Most 
of cyclists indicated that the SBL installation resulted in a facility that felt safer. The MV drivers 
in the study areas provided mixed feedback, with only 37 percent indicating a perception of 
increased safety and 30 percent suggesting there was no perceived change to safety along the 
corridors. Pedestrians similarly provided mixed responses, with 33 percent suggesting an 
increase in safety and 48 percent suggesting no safety change. For the observed safety 
assessment, the researchers did not observe any collisions or near collisions during the period for 
which they acquired video data. The researchers did observe six minor conflicts, five of which 
occurred at the turning and mixing zones of the intersections. 

In 2014, the New York City Department of Transportation evaluated SBLs constructed on 
Manhattan streets.(17) Although the before conditions varied across the sites, the New York City 
transportation officials concluded that the SBLs improved safety based on comparisons before 
and after at each site. General findings from this study relative to safety are as follows: 

• A reduction in injury crashes (by 17 percent). 
• A decrease in pedestrian injuries (by 22 percent). 
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• A decrease in cyclist injuries that occurred while bicycle volumes increased. 
• A reduction in cyclists’ risk for serious injury (by 75 percent) from 2001 to 2013. 

In 2015, FHWA developed a planning and design guide for SBL facilities.(3) As part of this 
effort, the study noted limitations in existing U.S. SBL research and provided recommendations 
for future research efforts. For safety activities, the report recommended that as the number of 
SBL facilities increases, researchers should develop CMFs that consider the varying SBL 
configurations. The report further notes a need to improve crash-reporting practices, incorporate 
conflict analysis into the overall assessment, and expand the safety analyses based on design 
elements and intersection characteristics. Based on an assessment of data for several study 
locations, the report further notes a need to collect or improve the estimation of bicycle volume 
at study locations so that exposure can be directly considered in the safety assessment process. 

Rothenberg, Goodman, and Sundstrom documented the crash analysis from the 2015 FHWA 
study.(3,18) They emphasized that safety assessments for SBL facilities should consider changes 
in total crashes (all crashes, including bicycle crashes) as well as changes due to the addition of 
these facilities. The researchers also noted that the following treatments appear to influence 
overall corridor safety:(18) 

• The use of parking lanes in combination with other treatments resulted in fewer total 
crashes. 

• A concrete curb (by itself and combined with other treatments) reduced the total number 
of crashes. However, the authors cautioned that only 14 of their 19 study sites included 
this treatment. 

• Plastic bollards combined with other treatments reduced total crashes; however, plastic 
bollards as the only vertical element were associated with an increase in total crashes. 

• Mixing zones combined with other treatments reduced total crashes (observed at five of 
six sites). 

• Lateral shift at intersections contributed to fewer crashes, except when combined with 
other treatments (when total crashes appear to increase). 

In a 2016 study, Zangenehpour et al. evaluated the safety of signalized intersections for locations 
in Montreal, PQ, Canada.(19) In this study, the research team used video data based on post 
encroachment time to evaluate cyclist behavior at 23 intersections (eight locations without an 
SBL, eight sites with the SBL on the right side, and seven locations with the SBL on the left 
side). This surrogate post encroachment value represents the time between when a cyclist departs 
a location and the potential time of collision with an MV. This metric is represented by the 
intersection of the two trajectories. Based on video reduction and analysis followed by a 
statistical assessment, the researchers provided the following observations: 

• Intersections with SBLs also experienced a higher bicycle volume than locations where 
SBLs were not present (possibly suggesting cyclists prefer these facilities). 
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• The average bicycle speed appeared to be similar between all facilities. 

• The number of interactions was greater at intersections with SBLs, but when exposure 
was considered, the rate of these interactions appeared to be lower for intersections with 
SBLs. 

• Intersection approaches with SBLs on the right or left were safer than intersections that 
did not have SBLs. 

• The likelihood of a dangerous interaction increased as the MV turning volume increased 
and decreased as the approaching bicycle volume increased. 

Safety Assessment Methods 

The existing SBL research has generally used the following three analytical approaches: 

• Crash analysis. 
• Video analysis (for conflicts and user compliance assessment). 
• User surveys. 

For each of these safety assessment methods, the researchers applied robust statistical 
techniques, where possible. The following summaries briefly describe how the researchers 
approached these analysis techniques. 

Crash Analysis 

Where practical, most of the published North American research has explored the use of crash 
analysis to assess, where feasible, before and after crash conditions. (See references 3, 9, 12, 13, 
15, and 18.) This before–after approach included simple comparisons that do not directly 
consider changes in exposure up to and including robust assessments that incorporated 
comparison sites. In all cases, the greatest limitation to this approach appeared to be the limited 
availability of after crash data. This constraint resulted in small sample sizes or evaluations of 
very short periods after SBL implementation. 

In general, a significant demand for determining the safety of SBL facilities in the United States 
exists. To date, traditional crash analysis research related to SBL configurations has been limited 
because after crash data are not always available, and optimal sample sizes that enable direct 
evaluations of the various SBL characteristics are therefore hard to obtain. The North American 
SBL literature draws attention to the need to better understand the influence of some unique SBL 
characteristics and to identify and populate missing data that, if available, could help enhance the 
transportation profession’s understanding of SBL applications. Table 4 identifies the issues 
highlighted in the published literature and summarizes key elements that need to be determined 
as part of a comprehensive SBL safety assessment. 
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Table 4. SBL detailed site characteristics and data limitations. 

Type of Issues Issues 
Detailed site 
characteristics 
noted in safety 
literature. 

• Intersection versus nonintersection locations/crashes. 
• Type of vertical element separating traffic. 
• One-way versus two-way SBL facilities. 
• One-way versus two-way MV lanes. 
• SBL position (right side, left side, or other). 
• Site geometry (vertical grade, etc.). 
• Placement of bicycle traffic control devices. 
• Intersection transition types (turning zones, mixing zones, or 

separated). 

Data limitations 
that contribute to 
expected safety 
performance. 

• Law enforcement and user compliance. 
• Changes in cyclist route choice after SBL implementation. 
• Limited before or after site and crash data. 
• Unavailable bicycle volume information. 
• MV traffic volume, including turning volumes. 

Video Analysis 

Researchers used video data to evaluate actual user performance and conducted conflict studies 
to assess expected safety performance at each SBL location. (See references 9, 10, and 19.) This 
approach generally focused on two methods: 

• Conflict analysis. 

• Cyclist compliance and perceived understanding and adherence to traffic control and 
geometric configurations. 

A secondary benefit of the video analysis was the ability to confirm bicycle volumes at each 
facility. 

User Surveys 

The strategic application of user surveys served as an additional safety assessment method. 
Researchers deployed surveys through a variety of techniques. One Canadian study used hospital 
records as a recruitment strategy.(14) Two studies deployed surveys by distributing them at the 
study sites and mailing them to residences near the SBL applications.(10,15,16) 
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LITERATURE REVIEW CLOSING COMMENTS 

The published literature and evolving use of SBL treatments clearly indicate that this unique 
bicycle facility holds promise for enhanced safety along a corridor. Because the deployment of 
SBL facilities has been limited, finding sufficient after data at a site to conduct a meaningful 
evaluation can be challenging. Over time, as these SBL configurations are refined and 
implemented in the United States and Canada, this limitation will subside. 
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CHAPTER 3. DATA COLLECTION AND DATABASE DEVELOPMENT 

This chapter reviews the data collection and database development. Initially, the team proposed 
to select one or two cities and conduct physical bicycle counts that could be used for exposure 
estimates. The data collection effort was scheduled for spring 2020, but the research team’s 
efforts were curtailed because the pandemic began at the same time. Therefore, the researchers 
developed an alternative data collection approach that culminated with the development of a 
five-jurisdiction dataset. 

SITE IDENTIFICATION 

The literature review included an extended list of sites that might have SBL configurations. The 
team also used the Green Lane Project database as an additional source of information for 
identifying these sites (see reference 20 for more information on this study). 

During earlier SBL studies, the researchers were challenged to identify enough locations with 
SBL implementation that would support a statistical assessment of study sites. Between 2010 and 
2020, several transportation agencies implemented numerous additional SBL implementations. 
As a result, the research team for this project determined that the prospective sample size for an 
SBL study was sufficient to conduct a statistical assessment of the safety performance at SBL 
sites. 

Site information included in the Green Lanes database was input by cyclists on a voluntary basis. 
Though there appeared to be some confusion about bicycle facility names (i.e., often a buffer 
bicycle lane was coded as an SBL), the Green Lanes database provided a rich resource for all 
types of bicycle facilities.(20) Most importantly, the street name, city, and State for this study’s 
data were accessed from the Green Lanes database. The researchers used the city and State 
information in the Green Lanes database as well as supplemental data, such as crash data from 
local agencies, to select the following cities to include in this study: 

• Cambridge. 
• San Francisco. 
• Seattle. 

In addition, the research team selected two additional cities to test the validity of the CMFs 
ultimately developed for this study: 

• Austin. 
• Denver. 

Within each city, several potential bicycle facilities may be present. Information about the data 
collection variables is addressed in the following data collection section. 

DATA COLLECTION 

The team compiled a list of data-related issues to consider when assessing the safety of an SBL 
facility. Table 5 identifies and defines these data requirements. To develop a CMF, there must be 
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a base condition (e.g., no bicycle lane or standard bicycle lane) and a target CMF (e.g., buffered 
bicycle lane or SBL). For this reason, site selection included all bicycle facilities within the study 
region. The project team also included variables that could potentially influence the safety 
performance of SBL facilities as well as the bicycle exposure estimate. This supplemental 
information provided valuable insight into the operational characteristics of the facilities. 

Table 5. Site information in database. 

Data Need Type of Data Collected Site Data Elements 
Location 
description 

Location • Street name 
• City 
• State 
• Beginning and ending cross streets 

Starting 
latitude/longitude 

Location Measured to extended curb if at intersection 

Ending 
latitude/longitude 

Location Measured to extended curb if at intersection 

Length Location Distance in miles 
Cross streets Location Between beginning and ending points 
Number of MV 
lanes 

Site 
characteristics 

Total for both directions of travel 

Roadway facility 
type 

Site 
characteristics 

• Urban arterial (two-way and one-way) 
• Urban collector (two-way and one-way) 
• Urban local street (two-way and one-way) 

Intersection 
channelization and 
traffic control 

Site 
characteristics 

• Islands (traditional, bend-in, bend-out, turn 
lanes, etc.) 

• MV and bicycle signalization 
• Signage and pavement markings 

Lighting Site 
characteristics 

Street light presence, placement, and type 

Corridor 
information 

Site 
characteristics 

• Speed limit 
• Driveway density 
• Number, type, and width of lanes 
• Number and type of intersections 
• Street network configuration 
• Vehicle parking restriction hours 
• Presence and location of sidewalks 

Direction of 
bicycle traffic flow 

Site 
characteristics 

Approaching or departing field of view 

Traffic operations 
for MV lanes 

Site 
characteristics 

One-way or two-way 
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Data Need Type of Data Collected Site Data Elements 
Median Site 

characteristics 
Physical separation of opposing MV maneuvers 

Parking lane 
location 

Site 
characteristics 

Presence and location of parking lane located left 
and/or right side of road if applicable. 

Type of bicycle 
facility 

Bicycle facility 
characteristics 

• No dedicated lane. 
• Traditional bicycle lane. 
• Buffered bicycle lane. 
• SBL. 

Year of 
construction 

Bicycle facility 
characteristics 

SBLs constructed earlier than 2010 may not be suitable 
if exposure information and crash data are not available  

Width of buffer Bicycle facility 
characteristics 

Locations with on-street parking should be further 
assessed to determine actual and effective buffer 
widths. 

Vertical element Bicycle facility 
characteristics 

• Flexible posts, bollards, or light poles. 
• Curb or raised median. 
• Landscaping and planters. 
• Concrete (zebra/armadillo) bumps, buttons, and 

parking stops. 
• Parked cars. 
• Grade. 
• Concrete barrier. 
• Guardrail. 
• Fence. 

SBL facility 
configuration 

Bicycle facility 
characteristics 

• Right side, one-way or two-way. 
• Left side, one-way or two-way. 
• Middle, two-way. 

Unique SBL 
features 

Bicycle facility 
characteristics 

• Truck aprons. 
• Mixing zones. 
• Elevated SBLs at driveways/crossings. 
• Green markings. 
• Bicycle facility continuity and operational 

consistency. 

Crash data Supplemental 
data from 
agency where 
sites are 
located 

Total number of crashes and number of fatal and injury 
crashes (specific consideration to who is injured: MV 
drivers or passengers, bicyclists, and pedestrians). 
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Data Need Type of Data Collected Site Data Elements 
Exposure Supplemental 

data from 
agency where 
sites are 
located 

• ADT or peak-hour volumes for MVs (passenger 
cars and trucks), bicycles, and pedestrians). 

• Land use and driveway types (as potential 
volume surrogates).  

• Increase in bicyclists due to the SBL placement. 

DATABASE DEVELOPMENT 

Team members acquired crash data and road characteristic information from local agencies for 
each study site. After inspecting this information, however, the researchers determined that more 
site-specific data would be required. To develop a robust dataset, the team used a combination of 
aerial photographs, primarily available at an online mapping website, and then catalogued the 
site features for each region of interest. The primary tool for this effort was the interactive 
panoramic street viewing feature of the online mapping site. A team member virtually navigated 
each road in the study region and documented the site features. This virtual navigation enabled 
the researcher to document sites with no bicycle lanes, sites with traditional bicycle lanes, SBLs, 
and other types of sites. Ultimately, locations with a shared-use path or a sharrow were excluded 
from additional analyses. At the completion of this database development effort, the team had 
compiled data for five jurisdictions where bicycle facilities were common. These data were then 
used for the subsequent analysis phases of this project. Chapters 4, 5, and 6 provide additional 
database information about select study sites.
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CHAPTER 4. ESTIMATING BICYCLE EXPOSURE: CAMBRIDGE 

INTRODUCTION 

This chapter reviews the estimation of bicycle exposure for Cambridge, first by assessing 
statistical relationships and models and, ultimately, by developing adjustment factors for the 
Cambridge study area. The City of Cambridge collects short-term traffic counts that can be used 
for this type of analysis. Cambridge has installed one permanent bicycle counter and conducts 
short-term counts at multiple locations regularly. The research team used these count data and 
blended these data with additional site features collected by the research team. The goal of this 
data-merging effort was to develop regression models that could reliably predict bicycle count 
data for typical urban roadway facilities. This chapter reviews this effort, first by identifying the 
data collection and database development effort and then by reviewing the subsequent modeling 
process. 

DATA COLLECTION: AVAILABLE BICYCLE AND SITE DATA 

The City of Cambridge has been consistently collecting bicycle count data for 16 intersections 
since 2003.(21) This effort includes bicycle count data for every year from 2003 to 2006 and for 
every other year since 2008. Due to the adverse weather in 2018, the city collected data in 2019 
as well. The counts are typically collected for morning (AM) (7:30–9:15) and evening (PM) 
(4:30–6:45) peaks during weekdays in September. Additionally, in 2015, the city installed a 
permanent bicycle counter on Broadway in Kendall Square.(22) 

The research team retrieved the original data from online sources and then used the Cambridge 
data to develop bicycle surrogate models. The data cover AM and PM peaks and provide the 
following information: 

• Count location: the intersection at which the count was conducted. 

• Year: the year of the count. 

• Date: the date of the count. 

• Time period: AM or PM count data. 

• Time: the 15-min time interval of the data collection. 

• Street: the name of particular streets for the counts at each intersection. 

• Traffic direction: the direction of traffic. 

• Cyclist location: where the cyclists were riding, on a street, sidewalk, or bicycle path. All 
the bicycle path data were removed from further analysis since the purpose of this study 
was evaluating the safety of various bicycle paths adjacent to MV roadways. 

• Cyclist direction: the direction of bicyclists, with or against traffic or on a bicycle path. 
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• Movement type: how the bicyclists were moving through the intersection. 

• Count: the counts of bicyclists. 

• Temperature: the temperature when collecting data. 

• Weather: the weather condition while collecting data. 

• Latitude: the latitude of the conducted count. 

• Longitude: the longitude of the conducted count. 

For this study, the research team extracted the 2016 (September 13, 2016) and 2019 
(September 17, 2019) data for further analysis. In addition, the team obtained the permanent 
bicycle count data from its website for similar dates and times as in the temporary bicycle count 
data.(22) 

The permanent bicycle counter device is assumed to slightly undercount the number of bicyclists 
because some of the bicyclists probably do not use the designated bicycle path to cross the road. 
To address this issue, the city conducted tube and manual counts to determine the missing 
number of bicyclists. The results indicated that an adjustment factor of 1.167 could be used for 
considering the missing bicyclists from the permanent bicycle counter.(22) Therefore, all the 
retrieved values from the permanent count station were multiplied by 1.167 to reflect the actual 
number of bicyclists. 

The research team also acquired land use data for the study area.(1)  

DATA MANIPULATION AND PREPARATION 

The research team then developed the estimated exposure thresholds for each site in the study 
area. To illustrate this development, this section explains the data preparation process for one 
example (the intersection of Anderson Bridge and John F. Kennedy (JFK) Street at Memorial 
Drive) (figure 2). The average daily traffic count data used for this demonstration was acquired 
from the Cambridge open data website.(23)  
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Original map © 2019 Google® Earth™ (see Acknowledgments). 

Figure 2. Map. Anderson Bridge and JFK Street at Memorial Drive in Cambridge.(24) 

Table 6 provides a part of the original dataset from the intersection of Anderson Bridge and JFK 
Street and Memorial Drive collected by Cambridge. Specifically, the table shows data were 
collected on bicyclists who arrived to or departed from the intersection and made either right, 
left, or through movements between 7:15 a.m. and 7:30 a.m. on September 17, 2019. In addition, 
the data include whether bicyclists rode with or against the traffic and on either street or 
sidewalk. 
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Table 6. Data table for Anderson Bridge, JFK Street, and Memorial Drive in Cambridge. 

Count Location Year Date 
Time 

Period Time Street 
Traffic 

Direction 
Cyclist 

Location 
Cyclist 

Direction Movement Count 
Temp 
(℉) Weather 

Anderson Bridge 
and JFK St. and 
Memorial Dr. 

2019 9/17/2019 AM 7:30 JFK St. Northbound Street With traffic Left 0 52 Clear 

Anderson Bridge 
and JFK St. and 
Memorial Dr 

2019 9/17/2019 AM 7:30 JFK St. Northbound Street Against 
traffic 

Left 0 52 Clear 

Anderson Bridge 
and JFK St. and 
Memorial Dr. 

2019 9/17/2019 AM 7:30 JFK St. Northbound Sidewalk With traffic Left 0 52 Clear 

Anderson Bridge 
and JFK St. and 
Memorial Dr. 

2019 9/17/2019 AM 7:30 JFK St. Northbound Sidewalk Against 
traffic 

Left 0 52 Clear 

Anderson Bridge 
and JFK St. and 
Memorial Dr. 

2019 9/17/2019 AM 7:30 JFK St. Northbound Street With traffic Right 2 52 Clear 

Anderson Bridge 
and JFK St. and 
Memorial Dr. 

2019 9/17/2019 AM 7:30 JFK St. Northbound Street Against 
traffic 

Right 0 52 Clear 

Anderson Bridge 
and JFK St. and 
Memorial Dr. 

2019 9/17/2019 AM 7:30 JFK St. Northbound Sidewalk With traffic Right 0 52 Clear 

Anderson Bridge 
and JFK St. and 
Memorial Dr. 

2019 9/17/2019 AM 7:30 JFK St. Northbound Sidewalk Against 
traffic 

Right 0 52 Clear 

Anderson Bridge 
and JFK St. and 
Memorial Dr. 

2019 9/17/2019 AM 7:30 JFK St. Northbound Street With traffic Through 10 52 Clear 

Anderson Bridge 
and JFK St. and 
Memorial Dr. 

2019 9/17/2019 AM 7:30 JFK St. Northbound Street Against 
traffic 

Through 0 52 Clear 

Anderson Bridge 
and JFK St. and 
Memorial Dr. 

2019 9/17/2019 AM 7:30 JFK St. Northbound Sidewalk With traffic Through 0 52 Clear 
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Figure 3 depicts all the movements of the bicyclists at the intersection, regardless of whether 
they are riding with or against the traffic. A bicycle path is located parallel to Memorial Drive, 
but the movements are not indicated in the figure because bicycle paths are not within the scope 
of this research. 

 
Original map © 2019 Google® Earth™ (see Acknowledgments). 

Figure 3. Map. Bicycle movements at the intersection of Anderson Bridge and JFK Street 
and Memorial Drive in Cambridge.(23,24) 

To better analyze the data, the research team labeled the data to indicate from which street the 
bicyclists are coming and to which street they are going. The team manually determined and 
labeled the origin and destination of the bicyclists by using the variables Street, Traffic 
Direction, and Movement Type for each leg of all the study intersections. The new variables were 
called From and To, respectively. For instance, the southbound road was labeled as “John F. 
Kennedy St.–SB” and the eastbound as “Memorial Dr.–EB.” Hence, the origin for the bicyclists 
that were going southbound and turning right was “John F. Kennedy St.–SB,” and the destination 
was “Memorial Dr.–EB.” Moreover, the direction of bicyclists was included in the variables 
because direction is an important factor for aggregating the count data in the next steps. Taking 
this example into consideration, the origin of the bicyclists would be “John F. Kennedy St.–SB–
From,” and the destination would be “Memorial Dr.–EB–To.” 
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Two additional variables included the Year and Time Period. These variables were also 
considered in the development of the final From and To variables. Table 7 represents the data 
table, including the new variables. Figure 4 graphically depicts a few data points and their 
associated names after manipulating and labeling the original dataset. 

 
Original map © 2019 Google® Maps™ (see Acknowledgments). 
NB = northbound; WB = westbound. 

Figure 4. Map. Cambridge data points with labels.(23,24) 
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Table 7. Updated data table for Anderson Bridge, JFK Street, and Memorial Drive in Cambridge, including origin and 
destination. 

Count Location Street From To Year Date 
Time 

Period 
Traffic 

Direction 
Movement 

Type 
Anderson Bridge 
and JFK St. and 
Memorial Dr. 

John F. 
Kennedy 
St.–SB 

John F. Kennedy St.–
SB_From_2016_AM 

John F. Kennedy St.–
NB_To_2016_AM 

2016 9/13/2016 AM Southbound Through 

Anderson Bridge 
and JFK St. and 
Memorial Dr. 

John F. 
Kennedy 
St.–SB 

John F. Kennedy St.–
SB_From_2019_AM 

John F. Kennedy St.–
NB_To_2019_AM 

2019 9/17/2019 AM Southbound Through 

Anderson Bridge 
and JFK St. and 
Memorial Dr. 

John F 
Kennedy 
St.–SB 

John F. Kennedy St.–
SB_From_2016_PM 

John F. Kennedy St.–
NB_To_2016_PM 

2016 9/13/2016 PM Southbound Through 

Anderson Bridge 
and JFK St. and 
Memorial Dr. 

John F. 
Kennedy 
St.–SB 

John F. Kennedy St–
SB_From_2019_PM 

John F. Kennedy St.–
NB_To_2019_PM 

2019 9/17/2019 PM Southbound Through 

Anderson Bridge 
and JFK St. and 
Memorial Dr. 

John F. 
Kennedy 
St.–NB 

John F. Kennedy St–
NB_From_2016_AM 

John F. Kennedy St.–
SB_To_2016_AM 

2016 9/13/2016 AM Northbound Through 

Anderson Bridge 
and JFK St. and 
Memorial Dr. 

John F. 
Kennedy 
St.–NB 

John F. Kennedy St–
NB_From_2019_AM 

John F. Kennedy St.–
SB_To_2019_AM 

2019 9/17/2019 AM Northbound Through 

Anderson Bridge 
and JFK St. and 
Memorial Dr. 

John F. 
Kennedy 
St.–NB 

John F. Kennedy St–
NB_From_2016_PM 

John F. Kennedy St.–
SB_To_2016_PM 

2016 9/13/2016 PM Northbound Through 

Anderson Bridge 
and JFK St. and 
Memorial Dr. 

John F. 
Kennedy 
St.–NB 

John F. Kennedy St–
NB_From_2019_PM 

John F. Kennedy St.–
SB_To_2019_PM 

2019 9/17/2019 PM Northbound Through 

Anderson Bridge 
and JFK St. and 
Memorial Dr. 

John F, 
Kennedy 
St.–NB 

John F. Kennedy St–
NB_From_2016_AM 

Memorial Drive–
EB_To_2016_AM 

2016 9/13/2016 AM Northbound Through 

Anderson Bridge 
and JFK St. and 
Memorial Dr. 

John F. 
Kennedy 
St.–NB 

John F. Kennedy St–
NB_From_2019_AM 

Memorial Drive–
EB_To_2019_AM 

2019 9/17/2019 AM Northbound Left 
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Count Location Street From To Year Date 
Time 

Period 
Traffic 

Direction 
Movement 

Type 
Anderson Bridge 
and JFK St. and 
Memorial Dr. 

John F. 
Kennedy 
St.–NB 

John F. Kennedy St.–
NB_From_2016_PM 

Memorial Drive–
EB_To_2016_PM 

2016 9/13/2016 PM Northbound Left 

Anderson Bridge 
and JFK St. and 
Memorial Dr. 

John F. 
Kennedy 
St.–NB 

John F. Kennedy St.–
NB_From_2019_PM 

Memorial Drive–
EB_To_2019_PM 

2019 9/17/2019 PM Northbound Left 

Anderson Bridge 
and JFK St. and 
Memorial Dr. 

John F. 
Kennedy 
St.–SB 

John F. Kennedy St.–
SB_From_2016_AM 

Memorial Drive–
EB_To_2016_AM 

2016 9/13/2016 AM Southbound Right 

Anderson Bridge 
and JFK St. and 
Memorial Dr. 

John F. 
Kennedy 
St.–SB 

John F. Kennedy St.–
SB_From_2019_AM 

Memorial Drive–
EB_To_2019_AM 

2019 9/17/2019 AM Southbound Right 

Anderson Bridge 
and JFK St. and 
Memorial Dr. 

John F. 
Kennedy 
St.–SB 

John F. Kennedy St.–
SB_From_2016_PM 

Memorial Drive–
EB_To_2016_PM 

2016 9/13/2016 PM Southbound Right 

Anderson Bridge 
and JFK St. and 
Memorial Dr. 

John F. 
Kennedy 
St.–SB 

John F. Kennedy St.–
SB_From_2019_PM 

Memorial Drive–
EB_To_2019_PM 

2019 9/17/2019 PM Southbound Right 

Anderson Bridge 
and JFK St. and 
Memorial Dr. 

John F. 
Kennedy 
St.–NB 

John F. Kennedy St.–
NB_From_2016_AM 

Paul Dudley White 
Path–
WB_To_2016_AM 

2016 9/13/2016 AM Northbound Right 

Anderson Bridge 
and JFK St. and 
Memorial Dr. 

John F. 
Kennedy 
St.–NB 

John F. Kennedy St.–
NB_From_2019_AM 

Paul Dudley White 
Path–
WB_To_2019_AM 

2019 9/17/2019 AM Northbound Right 
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STATISTICAL MODELING 

The main purpose of preparing the dataset was to develop bicycle surrogate exposure models for 
Cambridge, MA. Therefore, in addition to the bicycle count data, the research team collected and 
developed new variables. These variables, as defined by the team, included the following factors: 

• Average daily traffic (ADT): Researchers obtained the ADT data from the City of 
Cambridge Open Data Portal.(23) 

• Land use: Researchers downloaded the land-use data from the geographic information 
system of the City of Cambridge.(1) 

• Residential binary: Researchers defined this new variable as an extension of the variable 
land use. Residential binary indicates whether the dominant land use near a bicycle 
counter was residential. 

• Population density: Researchers downloaded the population and area (m2) information at 
the census tract level from the American Community Survey data.(25) This variable 
includes the population density (people/mi2) for each census tract. 

• Bicycle facility type: Researchers collected this information from aerial views to 
represent the type of bicycle facility, such as SBL, painted bicycle lane (with and without 
a buffer), and no bicycle lane. 

• Length of bicycle lanes within 1 mi of the bicycle counters: Researchers determined the 
bicycle facilities within Cambridge using a Web mapping platform.(24) The data were 
imported to a geospatial mapping software system for additional analysis. Team members 
drew buffers with 1-mi radii around each bicycle counter. Eventually, the team measured 
the length of bicycle miles within each buffer. The measurements considered each 
direction of travel separately.  

• Bicycle lane continuity: Researchers developed this variable from an aerial view to 
indicate whether a counter is located on a roadway with a continuous bicycle facility 
(i.e., the bicycle lane does not stop and start as a result of adjacent development). 

• One-way roadway: Researchers used aerial views on a Web mapping platform to 
determine whether the roadway of interest operated as a one-way facility. 

• Presence of bicycle lane: Researchers collected this variable from aerial views. The 
variable is a binary value and indicates whether a bicycle lane exists, regardless of the 
facility type. 
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Because the data are short-term counts and the AADB data are not available, two different 
approaches were considered for developing bicycle surrogate models: 

• Conducting two separate models for AM and PM peaks. 
• Developing peak-hour data models. 

In other words, the team developed two different sets of models for AM and PM data. Moreover, 
the research team calculated hourly data using the given 15-min data throughout to estimate the 
peak-hour volume. The peak-hour data for each leg of each intersection were used to developed 
peak-hour surrogate models. The following sections cover each separate analysis approach. 

AM and PM Models (15 Min) 

The original dataset provided 15-min bicycle count data for the AM and PM periods. In this 
section, the team directly used the given data to develop AM and PM bicycle surrogate models. 

AM Models (15 Min) 

Figure 5 shows the distribution of the 2,340 available bicycle count data points observed for the 
AM period, and table 8 provides the descriptive statistics of the study variables. 

 
Source: FHWA. 

Figure 5. Chart. Distribution of AM 15-min bicycle count data for Cambridge bicycle 
volume. 
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Table 8. Descriptive statistics of the study variable for the 15-min AM data for Cambridge. 

Variable Mean Standard Deviation Minimum Maximum 
Count 14.22 20.42 0 160 
ADT (vpd) 11,073.09 7,136.59 1,032 24,264 
Length (mi) of bicycle lanes 
within 1 mi 

11.98 3.12 4.96 15.67 

Presence of one-way roadway 
(1 = yes) 

0.25 0.43 0 1 

Presence of continuous 
bicycle lane (1 = yes) 

0.51 0.50 0 1 

Presence of separated bicycle 
lane (1 = yes) 

0.41 0.52 0 2 

Population density (pop/mi2) 20,428.16 10,367.45 5,692 49,022 
Presence of bicycle lane 
(1 = yes) 

0.49 0.50 0 1 

Presence of residential 
development (1 = yes) 

0.15 0.36 0 1 

pop = population; vpd = vehicles per day. 

Figure 6 represents the average bicycle count data over all the sites for each year separately. No 
noticeable increase/decrease in the average count occurred from 2016 to 2019. Cambridge 
provides bicycle count data every other year, but due to severe winter weather followed by 
unusually high heat trends in 2018, the city collected bicycle count data in 2019 as well. Table 9 
and table 10 summarize the average number of bicycles for each bicycle facility and land use, 
respectively. 

 
Source: FHWA. 

Figure 6. Chart. Average AM 15-min bicycle count data for the Cambridge study years 
(2016–2019). 
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Table 9. Frequency of various bicycle facility types for the 15-min AM data for Cambridge. 

Bicycle Facility Type Frequency 
(No./15 min.) 

No bicycle lane 1,200 
Painted bicycle lanes/no buffer 884 
Painted bicycle lanes with buffer adjacent to active travel lane 80 
Separated bicycle lane with buffer and vertical element 176 
Total 2,340 

Table 10. Frequency of various land uses for the 15-min AM data for Cambridge. 

Land Use Frequency 
(No./15 min.) 

Commercial 560 
Mixed use 160 
None 64 
Open space 128 
Other 1,072 
Residential 356 
Total 2,340 

Next, the research team conducted a correlation test to determine any correlations between the 
independent variables. Table 11 provides the results of the correlation test.
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Table 11. Correlation test for the 15-min AM data for Cambridge. 

Variable 

Population 
Density/ 

1,000 
Persons 

Continuous 
Bicycle 
Lane 

One-Way 
Roadway 

Presence 
of Bicycle 

Lane 

Separated 
Bicycle 
Lane 

Length (mi) 
of Bicycle 

Lanes 
Within 1 Mi 

Residential 
Binary 

Log 
(ADT) 

ADT/ 
1,000 
Per 
Day 

Population 
density/1,000 
persons 

1 ― ― ― ― ― ― ― ― 

Continuous bicycle 
lane (1 = yes) 

−0.06 1 ― ― ― ― ― ― ― 

One-way roadway 
(1 = yes) 

0.04 −0.06 1 ― ― ― ― ― ― 

Presence of bicycle 
lane (1 = yes) 

−0.11 0.83 −0.19 1 ― ― ― ― ― 

Separated bicycle 
lane (1 = yes) 

−0.10 0.74 −0.26 0.77 1 ― ― ― ― 

Length (mi) of 
bicycle lanes 
within 1 mi 

−0.07 0.02 0.10 0.06 0.02 1 ― ― ― 

Residential 
(1 = yes) 

−0.12 −0.11 0.13 −0.10 −0.04 0.20 1 ― ― 

Log(ADT) 0.06 0.26 −0.42 0.25 0.19 −0.05 −0.17 1 ― 
ADT/1,000 0.13 0.20 −0.43 0.20 0.13 −0.22 −0.24 0.92 1 

Log = logarithm. 
Note: Values shown as bold indicate variable correlation of 0.7 or higher.
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The research team considered using nested mixed-effect regression models because each single 
study intersection has multiple legs, and each leg has multiple data points to represent 
15-min intervals. In the models, two variables of intersection (represented as CountLoc) and 
study location (defined as Group) were considered as random-effect variables where CountLoc 
represents the physical location of each count. The following sections provide the results of 
nested mixed-effect Poisson and nested mixed-effect negative binomial models, respectively. 

PM Models (15-Min) 

The PM period included 2,920 data points, and figure 7 shows the distribution of PM bicycle 
count data. Table 12 provides the descriptive statistics of the study variables. 

 
Source: FHWA. 

Figure 7. Chart. Distribution for Cambridge PM 15-min bicycle count data. 

Table 12. Descriptive statistics of the study variable for the 15-min PM data for 
Cambridge. 

Variable Mean Standard Deviation Minimum Maximum 
Count 14.67 19.94 0 170 
ADT (vpd) 11,085.18 7,136.41 1,032 24,264 
Length (mi) of bicycle lanes 
within 1 mi 

11.97 3.12 4.96 15.67 

One-way roadway (1 = yes) 0.25 0.43 0 1 
Continuous bicycle lane 
(1 = yes) 

0.51 0.50 0 1 

Separated bicycle lane (1 = yes) 0.41 0.52 0 2 
Population density (pop/mi2) 20,420.47 10,374.21 5,692 49,022 
Presence of bicycle lane 
(1= yes) 

0.49 0.50 0 1 

Residential (1 = yes) 0.15 0.36 0 1 
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Figure 8 shows the average PM bicycle counts for the study years, and table 13 and table 14 
provide the frequency of each bicycle facility and land use types for the PM data, respectively. 

 
Source: FHWA. 

Figure 8. Chart. Average PM 15-min bicycle count data for the Cambridge study years. 

Table 13. Frequency of various bicycle facility types for the Cambridge 15-min PM data. 

Bicycle Facility Type 
Frequency 

(No.) 
No bicycle lane 1,500 
Painted bicycle lanes/no buffer 1,100 
Painted bicycle lanes with buffer adjacent to active travel 
lane 

100 

Separated bicycle lane with buffer and vertical element 220 
Total 2,920 

Table 14. Frequency of various land uses for the 15-min PM data for Cambridge. 

Land Use Frequency (No.) 
Commercial 700 
Mixed use 200 
None 80 
Open space 160 
Other 1,340 
Residential 440 
Total 2,920 

In a manner similar to the AM data modeling effort, the research team conducted a correlation 
test to determine any possible correlation between the study variables before developing the 
surrogate models. Table 15 represents the correlation test results.
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Table 15. Correlation test for the 15-min PM data. 

Variable ADT 
Population 

Density/1,000  

Continuous 
Bicycle 
Lane 

One-Way 
Roadway 

Presence 
of 

Bicycle 
Lane 

Separated 
Bicycle 
Lane 

Length 
(mi) of 
Bicycle 
Lanes 
Within 

1 Mi 
Residential 

Binary 
Log 

(ADT) 
ADT (vpd) 1 ― ― ― ― ― ― ― ― 
Population density/ 
1,000 persons 

0.15 1 ― ― ― ― ― ― ― 

Continuous bicycle 
lane (1 = yes) 

0.25 −0.07 1 ― ― ― ― ― ― 

One-way roadway 
(1 = yes) 

−0.42 0.02 −0.07 1 ― ― ― ― ― 

Presence of bicycle 
lane (1 = yes) 

0.25 −0.12 0.82 −0.21 1 ― ― ― ― 

Separated bicycle 
lane (1 = yes) 

0.17 −0.11 0.73 −0.27 0.76 1 ― ― ― 

Length (mi) of 
bicycle lanes within 
1 mi 

−0.19 −0.09 0.00 0.08 0.05 0.01 1 ― ― 

Residential (1 = yes) −0.24 −0.13 −0.12 0.11 −0.10 −0.04 0.19 1 ― 
Log(ADT) 0.92 0.07 0.30 −0.42 0.29 0.22 −0.02 −0.15 1 

Note: Values shown as bold indicate variable correlation of 0.7 or higher. 
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Next, the team developed nested mixed-effect negative binomial models and nested mixed-effect 
Poisson models, which were developed by using the variables CountLoc and Group as the 
random-effect variables where CountLoc refers to the physical location of the bicycles.  

Aggregated 15-Min AM and PM Models 

The dataset included 5,260 data points when aggregating AM and PM 15-min data for the study 
sites. Figure 9 represents the distribution of the bicycle count data, and table 16 provides 
descriptive statistics of the study variables. 

 
Source: FHWA. 

Figure 9. Chart. Distribution of the aggregated 15-min AM and PM bicycle count data for 
Cambridge. 

Table 16. Descriptive statistics of the study variable for the aggregated 15-min AM and PM 
bicycle count data for Cambridge. 

Variable Mean Standard Deviation Minimum Maximum 
Bicycle count 14.47 20.15 0 170 
ADT (vpd) 11,079.80 7,135.81 1,032 24,264 
Length (mi) of bicycle lanes 
within 1 mi 

11.97 3.12 4.96 15.67 

One-way roadway (1  yes) 0.25 0.43 0 1 
Continuous bicycle lane 
(1 = yes) 

0.51 0.50 0 1 

Separated bicycle lane 
(1 = yes) 

0.41 0.52 0 2 

Population density (pop/mi2) 20,423.89 10,370.22 5,692 49,022 
Presence of bicycle lane 
(1 = yes) 

0.49 0.50 0 1 
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Additionally, figure 10, table 17, and table 18 provide information about the average bicycle 
count data for each year as well as the frequency of various bicycle facilities and land uses. 

 
Source: FHWA. 

Figure 10. Chart. Distribution for Cambridge aggregated 15-min AM and PM bicycle 
count data for the study years. 

Table 17. Frequency of various bicycle facility types for the aggregated 15-min AM and 
PM bicycle count data for Cambridge. 

Bicycle Facility Type 
Frequency 

(No.) 
No bicycle lane 2,700 
Painted bicycle lanes/no buffer 1,984 
Painted bicycle lanes with buffer adjacent to active travel lane 180 
Separated bicycle lane with buffer and vertical element 396 
Total 5,260 

Table 18. Frequency of various land uses for the aggregated 15-min AM and PM bicycle 
count data for Cambridge. 

Land Use 
Frequency 

(No.) 
Commercial 1,260 
Mixed use 360 
None 144 
Open space 288 
Other 2,412 
Residential 796 
Total 5,260 
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The research team conducted another Pearson’s correlation test before the development of 
regression models (see table 19). 
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Table 19. Correlation test for the aggregated 15-min AM and PM bicycle count data for Cambridge. 

Variable 

Population 
Density/ 

1,000 

Continuous 
Bicycle 
Lane 

One-Way 
Roadway 

Presence 
of 

Bicycle 
Lane 

Separated 
Bicycle 
Lane 

Length (mi) 
of Bicycle 

Lanes 
within 1 Mi 

Residential 
Binary 

Log 
(ADT) 

ADT/ 
1,000 

Population 
density/1,000 

1 ― ― ― ― ― ― ― ― 

Continuous 
bicycle lane 

−0.07 1 ― ― ― ― ― ― ― 

One-way 
roadway 

0.03 −0.07 1 ― ― ― ― ― ― 

Presence of 
bicycle lane 

−0.12 0.82 −0.21 1 ― ― ― ― ― 

Separated 
bicycle lane 

−0.11 0.73 −0.27 0.76 1 ― ― ― ― 

Length (mi) of 
bicycle lanes 
within 1 mi 

−0.09 0.00 0.09 0.05 0.01 1 ― ― ― 

Residential 
binary 

−0.13 −0.12 0.12 −0.10 −0.04 0.19 1 ― ― 

Log(ADT) 0.07 0.30 −0.42 0.29 0.22 −0.02 −0.16 1 ― 
ADT/1,000 0.15 0.25 −0.42 0.25 0.17 −0.19 −0.24 0.92 1 
Note: Values shown as bold indicate variable correlation of 0.7 or higher. 
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Peak-Hour Models 

The peak-hour data contained 292 observations. Figure 11 depicts the distribution of the 
peak-hour bicycle count data for the study sites, and table 20 provides descriptive statistics of the 
peak-hour data. 

 
Source: FHWA. 

Figure 11. Chart. Distribution for Cambridge peak-hour bicycle count data by hourly 
volume. 

Table 20. Descriptive statistics of the study variable for the peak hour. 

Variable Mean Standard Deviation Minimum Maximum 
Peak-hour bicycle volume 99.05  113.63  0 582 
ADT (vpd) 11,085.18  7,147.44  1,032  24,264  
Length (mi) of bicycle lanes 
within 1 mi 

11.97  3.13  4.96 15.67 

One-way roadway (1 = yes) 0.25  0.43  0 1 
Continuous bicycle lane 
(1 = yes) 

0.51  0.50  0 1 

Separated bicycle lane 
(1 = yes) 

0.41  0.52  0 2 

Population density 
(pop/mi2) (1 = yes) 

0.49  0.50  0 1 

Presence of bicycle lane 
(1 = yes) 

0.15  0.36  0 1 

Residential (1 = yes) 0.15  0.36  0 1 
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Figure 12 shows the average peak-hour bicycle counts over all the study sites for each year 
separately. As depicted, in 2019, the number of bicyclists increased over that observed for 2016. 
Table 21 and table 22 show the distribution of each bicycle facility and land use type, 
respectively. 

 
Source: FHWA. 

Figure 12. Chart. Distribution of Cambridge peak-hour bicycle count data for the study 
years (2016–2019). 

Table 21. Frequency of various bicycle facility types for the peak hour. 

Bicycle Facility Type 
Frequency 

(No.) 
No bicycle lane 150 
Painted bicycle lanes/no buffer 110 
Painted bicycle lanes with buffer adjacent to active travel 
lane 

10 

Separated bicycle lane with buffer and vertical element 22 
Total 292 
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Table 22. Frequency of various land uses for the peak-hour data. 

Land Use Frequency 
(No.) 

Commercial 70 
Mixed use 20 
None 8 
Open space 16 
Other 134 
Residential 44 
Total 292 

The research team considered the results of the correlations tests, represented in table 23, to 
guide variable selections when developing the bicycle surrogate models. 
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Table 23. Correlation test for Cambridge peak-hour data. 

Variable 

Population 
Density/ 

1,000 

Continuous 
Bicycle 
Lane 

One-Way 
Roadway 

Presence 
of 

Bicycle 
Lane 

Separated 
Bicycle 
Lane 

Length (mi) 
of Bicycle 

Lanes 
within 1 Mi 

Residential 
Binary 

Log 
(ADT) 

ADT/ 
1,000 

Population 
density/1,000 

1 ― ― ― ― ― ― ― ― 

Continuous 
bicycle lane 
(1 =1 yes) 

−0.07 1 ― ― ― ― ― ― ― 

One-way 
roadway 
(1 = yes) 

0.02 −0.07 1 ― ― ― ― ― ― 

Presence of 
bicycle lane 
(1 = yes) 

−0.12 0.82 −0.21 1 ― ― ― ― ― 

Separated 
bicycle lane 
(1 = yes) 

−0.11 0.73 −0.27 0.76 1 ― ― ― ― 

Length (mi) of 
bicycle lanes 
within 1 mi 

−0.09 0.00 0.08 0.05 0.01 1 ― ― ― 

Residential 
(1 = yes) 

−0.13 −0.12 0.11 −0.10 −0.04 0.19 1 ― ― 

Log(ADT) 0.07 0.30 −0.42 0.29 0.22 −0.02 −0.15 1 ― 
ADT/1,000 0.15 0.25 −0.42 0.25 0.17 −0.19 −0.24 0.92 1 

Note: Values shown as bold indicate variable correlation of 0.7 or higher. 
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Nested Mixed-Effect Negative Binomial 

Although the research team made several attempts to statistically develop a nested mixed-effect 
negative binomial model, they were unable to identify any models that converged. 

Aggregated AM and PM Peak-Hour Models 

In this section, the research team considered both the AM and PM peak-hour data points for each 
location in the analysis. The dataset included 585 observations. Figure 13 depicts the distribution 
of the peak-hour bicycle count data for the study sites. The trends observed for the AM and PM 
as well as average AADB, as shown in the AM and PM summaries, are consistent with the 
aggregated summary. 

 
Source: FHWA. 

Figure 13. Chart. Distribution of Cambridge aggregated AM and PM peak-hour count 
data. 
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Figure 14 indicates the average peak-hour bicycle count over all the study sites for each year 
separately. As depicted, the number of bicyclists was higher in 2019 than in 2016. Table 24 
provides descriptive statistics of the peak-hour data. Table 25 and table 26 show the distribution 
of each bicycle facility and land-use type, respectively. 

 
Source: FHWA. 

Figure 14. Chart. Distribution of Cambridge aggregated peak-hour bicycle count data for 
the PM periods. 

Table 24. Descriptive statistics of the study variable for the aggregated AM and PM peak 
hour. 

Variable Mean 
Standard 
Deviation Minimum Maximum 

Peak-hour bicycle volume 
(count) 

70.36 92.71 0 582 

ADT (vpd) 11,073.09 7,141.17 1,032 24,264 
Length (mi) of bicycle lanes 
within 1 mi 

11.98 3.13 4.96 15.67 

One-way roadway (1 = yes) 0.25 0.43 0 1 
Continuous bicycle lane 
(1 = yes) 

0.51 0.50 0 1 

Separated bicycle lane 
(1 = yes) 

0.41 0.52 0 2 

Population density (pop/mi2) 20,428.16 10,374.11 5,692 49,022 
Presence of bicycle lane 
(1 = yes) 

0.49 0.50 0 1 
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Table 25. Frequency of various bicycle facility types for the aggregated AM and PM 
peak-hour data. 

Bicycle Facility Type 
Frequency 

(No.) 
No bicycle lane 300 
Painted bicycle lanes/no buffer 221 
Painted bicycle lanes with buffer adjacent to active travel lane 20 
Separated bicycle lane with buffer and vertical element 44 
Total 585 

Table 26. Frequency of various land uses for the aggregated AM and PM peak-hour data. 

Land Use 
Frequency 

(No.) 
Commercial 140 
Mixed use 40 
None 16 
Open space 32 
Other 268 
Residential 89 
Total 585 
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The research team considered the results of the correlations tests, represented in table 27, for conducting the bicycle surrogate models. 

Table 27. Correlation test for the aggregated AM and PM peak-hour data. 

Variable 

Population 
Density/ 

1,000 

Continuous 
Bicycle 
Lane 

One-Way 
Roadway 

Presence 
of Bicycle 

Lane 

Separated 
Bicycle 
Lane 

Length (mi) 
of Bicycle 

Lanes 
within 1 Mi 

Residential 
Binary 

Log 
(ADT) 

ADT/
1,000 

Population 
density/1,000 

1 ― ― ― ― ― ― ― ― 

Continuous 
bicycle lane 
(1 = yes) 

−0.07 1 ― ― ― ― ― ― ― 

One-way 
roadway 
(1 = yes) 

0.03 −0.07 1 ― ― ― ― ― ― 

Presence of 
bicycle lane 
(1 = yes) 

−0.13 0.86 −0.24 1 ― ― ― ― ― 

Separated 
bicycle lane 
(1 = yes) 

−0.11 0.73 −0.27 0.82 1 ― ― ― ― 

Length (mi) 
of bicycle 
lanes within 1 
mi 

−0.09 0.00 0.09 0.06 0.01 1 ― ― ― 

Residential 
(1 = yes) 

−0.12 −0.12 0.12 −0.10 −0.04 0.19 1 ― ― 

Log(ADT) 0.07 0.30 −0.42 0.30 0.22 −0.02 −0.16 1 ― 
ADT/1,000 0.15 0.25 −0.43 0.26 0.18 −0.20 −0.24 0.92 1 

Note: Values shown as bold indicate variable correlation of 0.7 or higher. 
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Nested Mixed-Effect Negative Binomial 

No nested mixed-effect negative binomial models converged for this dataset. Models included 
Year as a potential variable, but the results indicated this variable was insignificant in all the 
models. Consequently, the team next explored ways to potentially estimate the AADBs from the 
available short-term counts. 

ESTIMATING AADBs FROM THE SHORT-TERM BICYCLE COUNTS 

The City of Cambridge does not provide yearly bicycle count data to enable calculating AADBs 
for the given sites and using them for estimating AADBs for other locations. However, the city 
does have one permanent bicycle count station that can be used to extrapolate short-term bicycle 
counts to AADBs. Therefore, the research team calculated K-factors for the permanent bicycle 
count station and applied that to the other study sites. 

A K-factor is the proportion of design hourly volume to average annual daily traffic (AADT), as 
defined in figure 15. In this case, the team considered the peak-hour bicycle count data. 

 
Figure 15. Equation. Calculation based on K-factor and AADB. 

Where: 
K = the factor used for traffic volume adjustment for volume distribution in a 24-h period. 
DHV = the design hourly bicycle volume for the 30th highest hourly volume for both 

directions. 

The team considered the following steps to calculate K-factors for permanent bicycle counts 
given its raw data: 

• Extracting the 2016 and 2019 permanent bicycle count data according to the dates of the 
study intersection. 

• Adjusting the values given the adjustment factor of 1.167.(22) 

• Calculating AADB by considering the number of days within each year and the number 
of missing days. 

• Calculating two sets of K-factors for both dominant and nondominant directions, with 
2016 and 2019 data to be further applied to the other study sites. 

The research team considered each direction of travel as an independent site and calculated 
AADB values separately. Table 28 shows the calculated and adjusted AADBs for each direction 
of each year and the K-factors for the permanent count station data. The year 2016 was a leap 
year, and the analysis included this additional adjustment factor when calculating the AADB. 
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Table 28. Permanent Count Station K-factors. 

Date Direction Time 
Peak-Hour 

Volume AADB K-Factor 
9/13/2016 Eastbound  Peak hour 79 678 0.11652 
9/13/2016 Westbound 

(dominant) 
Peak hour 224 547 0.40951 

9/17/2019 Eastbound Peak hour 77 717 0.10739 
9/17/2019 Westbound 

(dominant) 
Peak hour 207 661 0.31316 

Ultimately, the team applied the calculated K-factors represented in table 28 to the other study 
sites considering the dominant direction and year. For areas with only one direction of travel for 
bicyclists, the team implemented the K-factor of the dominant direction. If both directions had 
the same bicycle volume, the team applied a value of 0.12367, which equals 
(79+224)∕(716+661)∕2, for 2016 and a value of 0.10305, which equals (77+207)∕(716+661)∕2) for 
2019 for both directions. 

The research team then mapped the adjusted exposure estimates to site and crash data for an 
assessment of safety for bicycle facilities in Cambridge.
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CHAPTER 5. ESTIMATING BICYCLE EXPOSURE: SAN FRANCISCO 

INTRODUCTION 

For this chapter, the research team selected the San Francisco as a case study to determine the 
feasibility of estimating AADB values based on known counts. San Francisco has installed both 
permanent and temporary bicycle counters at various locations within the city. Each bicycle 
counter provides multiyear cyclist counts for the bicycle counter location. The research team 
used these count data and blended these data with additional site features collected by the 
research team (refer to chapter 3 for more information on data collection). 

The goal of this data-merging effort was to develop a database that could be used to develop 
regression models that could reliably predict AADB for typical urban roadway facilities. This 
chapter reviews this effort, first by identifying the data collection and database development 
effort and then by reviewing the subsequent modeling process. 

DATA COLLECTION: BICYCLE COUNT AND SITE FEATURE VARIABLES 

The team obtained San Francisco bicycle count data from the San Francisco Municipal 
Transportation Agency website.(25) The data collection covered the period from 2016 to 2021 and 
included data from 1 to 5 yr, depending on the availability at each site. Table 29 provides the 
distribution of the bicycle count data for each year. 

Table 29. Distribution of bicycle count data over years for San Francisco. 

Year Frequency 
2016 32 (leap year) 
2017 32 
2018 26 
2019 24 
2020 20 (leap year) 
2021 11 
Total 145 

The bicycle count data represent the total number of bicyclists over each year for each site. To 
calculate the AADB for each individual site and year, the number of days per year should be 
considered (because years divisible by four are leap years). Figure 16 depicts the AADB over the 
sites for each year. The drop in the AADB starting in 2020 might be associated with the 
pandemic. Therefore, to avoid any bias in the results due to the pandemic, the team removed the 
31 data points for 2020 and 2021. Figure 17 represents a graphical distribution of the AADB 
values for the study sites after removing the 2020 and 2021 data. 
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Source: FHWA. 

Figure 16. Graph. Average AADB for San Francisco (2016–2021). 

 
Source: FHWA. 

Figure 17. Chart. AADB distribution for San Francisco (2016–2019). 

The sites located in the study region represent a variety of bicycle facilities. Table 30 
summarizes the bicycle facilities as identified by the data collection efforts.  
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Table 30. Frequency of various types of bicycle facilities for San Francisco. 

Bicycle Facility Type 
Frequency

(No.) 
Nothing 34 
Painted bicycle lane: no buffer 36 
Painted bicycle lane: with buffer 6 
SBL: with buffer 38 
Total 145 

For further statistical analysis and modeling, the research team assembled various roadway and 
site characteristic variables to evaluate as surrogates for AADB. Table 31 identifies and defines 
these study variables, and table 32 provides the descriptive statistics for the variables. 

Table 31. Study variables for San Francisco. 

Variable Definition 
Length (mi) of bicycle 
lanes within 1 mi  

Length (mi) of bicycle lanes within 1 mi radius of a bicycle 
counter 

ADT ADT (vehicle/day) 
Population density Population density (people/mi2) 
One-way roadway Whether a roadway is one-way 
Presence of bicycle lane Whether a bicycle lane exists at the count location 
Residential binary Whether the adjacent land use is residential 
Continuous bicycle lane Whether the adjacent bicycle lane is continuous 

Table 32. Descriptive statistics for the study variables for San Francisco. 

Variable Mean 
Standard 
Deviation Minimum Maximum 

AADB 570.76 546.79 39 2,137 
ADT 12,512.84 6,142.11 0 24,110 
Population density 24,010.02 10,247.75 175 46,570 
Continuous bicycle lane 0.70 0.46 0 1 
One-way roadway 0.21 0.41 0 1 
Residential binary 0.33 0.47 0 1 
Length (mi) of bicycle lanes within 1 mi 8.26 5.21 0.15 16.55 
Presence of bicycle lane 0.72 0.45 0 1 

The team considered Land Use as another variable in the AADB analysis. Most of the adjacent 
land use is residential, whereas commercial, industrial, public, and mixed use are sparsely 
distributed within the study region of the city. 
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PRELIMINARY STATISTICAL ASSESSMENT: CORRELATION TEST 

As an initial step, the research team conducted a correlation test to assess correlation between the 
individual variables. Table 33 presents the results of the Pearson’s correlation test. None of the 
variables are highly correlated. Therefore, there was no need to consider including any 
interaction terms in the prediction models.
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Table 33. Correlation test for San Francisco. 

Variable ADT Log(ADT) 
Population 

Density 
Residential 

Binary 
One-Way 
Roadway 

Length (mi) 
of Bicycle 

Lanes Within 
1 Mi  

Presence 
of 

Bicycle 
Lane 

ADT 1 ― ― ― ― ― ― 
Log(ADT) 0.66 1 ― ― ― ― ― 
Population density –0.11 –0.11 1 ― ― ― ― 
Residential binary –0.14 –0.25 0.16 1 ― ― ― 
One-way roadway 0.04 0.11 0.20 –0.09 1 ― ― 
Length (mi) of bicycle lanes within 
1 mi 

0.10 0.30 0.38 –0.31 0.26 1 ― 

Presence of bicycle lane 0.21 0.33 0.06 –0.06 0.13 0.21 1 
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MODELING RESULTS FOR SAN FRANCISCO 

The research team examined various statistical techniques and explored a combination of the 
study variables to develop the AADB prediction models. Ultimately, among the developed 
models, the research team determined that the Poisson mixed–effect model represented in 
table 34 and figure 18 provided the best prediction. In this model, AADB is the dependent 
variable, site number is the random-effect variable, and log(ADT), miles of bicycle lanes within 
1 mi, population density, one-way roadway, and land use are considered independent variables. 
Table 34 depicts the cumulative residual plot based on miles of bicycle lane with 1 mi. similarly 
depicts the cumulative residual plot based on ADT. 

Table 34 further demonstrates that an increasing log(ADT), population density, miles of bicycle 
lanes within 1 mi, and consideration of providing one-way roadways were associated with an 
increase in the expected AADB). Moreover, providing mixed-use, public, and residential land 
uses appeared to be associated with a decrease in the number of bicyclists compared to the 
commercial and industrial land uses. 

Table 34. Final bicycle surrogate model for San Francisco. 

Variable Estimate Standard Error z-Value Pr(>|z|) 
(Intercept) 4.668 0.481 9.699 <0.0001 
Length (mi) of bicycle lanes within 1  0.094 0.020 4.672 <0.0001 
Factor(one-way roadway)  0.813 0.206 3.951 <0.0001 
Log(ADT) 0.089 0.047 1.899 0.0576 
Population density/1,000 0.017 0.009 1.933 0.0533 
factor(NewLU) mixed use* −1.104 0.222 −4.965 <0.0001 
factor(NewLU)public −1.555 0.326 −4.765 <0.0001 
factor(NewLU)residential −1.354 0.232 −5.835 <0.0001 

Functional form: AADB ~ log(ADT) + Length (mi) of Bicycle Lanes Within 1 Mi + Population Density/1,000 + 
factor(One-Way Roadway) + factor(NewLU) + (1 | Location). 
*Base scenario: commercial and industrial. 
LU = land use; Pr = probability. 
Note: Akaike information criterion (AIC) = 1,934.2; deviance = 1,916.2; random-effect variance = 0.3491; average 
prediction error = 284.77; coefficient of variation (CV) = 0.499. 
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Source: FHWA. 
bpd = bicycles per day. 

Figure 18. Graph. Scatterplot for San Francisco model. 
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CHAPTER 6. ESTIMATING BICYCLE EXPOSURE: SEATTLE 

INTRODUCTION 

This chapter summarizes the bicycle exposure modeling process for Seattle. The research team 
selected Seattle as a case study to determine the feasibility of estimating AADB values based on 
known counts. Seattle has installed both permanent and temporary bicycle counters at various 
locations within the city. Each bicycle counter provides multiyear cyclist counts for the bicycle 
counter location. The research team blended these count data with additional site features 
collected by the research team. The goal of this data-merging effort was to develop regression 
models that could reliably predict AADB for typical urban roadway facilities. This chapter 
reviews this effort, first by identifying the data collection and database development effort and 
then by reviewing the subsequent modeling process. 

DATA COLLECTION: BICYCLE COUNT 

The research team assembled a variety of roadway and site features to determine reasonable site 
features that might serve as surrogates for AADB. Because the goal of this effort was to base the 
predictive method on actual bicycle volume information, where possible, the team acquired 
bicycle count data that were previously collected from Seattle.(27) The team then used these 
bicycle count data to calculate the respective AADB values for each count station location. The 
City of Seattle installed 12 bicycle counters within the city, and the data from 10 of the counters 
are publicly available.  

Among the 10 bicycle counters for which data were readily available, 3 were permanent counters 
that monitored cyclists 24 h/d, 7 d/w, and 365 d/yr. The City of Seattle uploads the data from 
these three counters once a day. The city uploads the data for the remaining seven counters once 
a month. The data acquired from these bicycle counters date back to 2014. Based on the 
reporting frequency of the data and the available number of months and days for each counter 
(and adjusting for some missing days or months), the research team calculated the AADB for 
each year at each site. Table 35 shows the sites and the number of available years of data. 

Table 35. Bicycle counters and number of available years of data. 

Bicycle Counter Name Count at Site 
2nd Ave Bicycle Counter 5 
39th Ave NE Greenway at NE 62nd St 4 
Broadway Cycle Track North of E Union St 6 
Burke Gilman Trail North of NE 70th St 6 
Chief Sealth Trail North of Thistle 2 
Elliott Bay Trail in Myrtle Edwards Park 7 
Fremont Bicycle Counters 7 
MTS Trail West of I-90 Bridge 7 
NW 58th St Greenway at 22nd Ave NW 7 
Spokane Bicycle Counters 7 
Total 58 

Note: The italicized cells indicate the permanent counters. 
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The team members eliminated nine data points that collectively represented two bicycle trails 
from further analysis because of the different characteristics of bicycle trails compared to on-
street bicycle facilities. Ultimately, the bicycle count database included 49 observations available 
for further analysis.  

DATA COLLECTION: SITE FEATURES 

In addition to the acquisition of actual bicycle count data, the research team also compiled a 
database that included on-road bicycle facilities (primarily traditional bicycle lanes, bicycle 
buffers, and SBLs). For each of these facilities, team members documented a variety of site 
characteristics that could potentially influence the route choice and resulting roadway facility 
bicycle volume. The following eight variables introduce features assembled in the site feature 
database for which the variables appeared to have some potential correlation to the AADT (or 
ADT), as observed during the subsequent statistical modeling efforts: 

• ADT: The research team obtained the annual ADT data from the Washington Geospatial 
Open Data Portal.(28) The available data date back to 2014. 

• Presence of bicycle lane: Team members collected this variable from aerial views. The 
variable is a binary value and indicates whether a bicycle lane exists, regardless of the 
facility type. 

• New land use: The researchers combined the single-family and multifamily residentials 
to represent “Residential” as a single category. This information was acquired by 
examining the land use through a street view perspective on a Web mapping platform. 

• Residential binary: Team members downloaded land-use data from the Washington 
Geospatial Open Data Portal and converted this information to a binary variable to 
indicate whether the dominant land use near a bicycle counter was residential.(27) 

• Population density: The team acquired population and area (m2) data from a free on-line 
data source. These data provided information at the census tract level.(25) This 
information includes the population density (population/mi2) for each census tract. 

• Length of bicycle lanes within 1 mi of the bicycle counters: The research team 
determined the bicycle facilities within Seattle using an online mapping platform. The 
team then imported the data to a geospatial mapping system drew buffers with 1-mi radii 
around each bicycle counter. Eventually, the team measured the length of bicycle miles 
within each buffer. Each direction of travel was considered separately in the 
measurements. 

• Bicycle lane continuity: Team members developed this variable from an aerial view to 
indicate whether a counter is located on a roadway with a continuous bicycle facility 
(i.e., the bicycle lane does not stop and start as a result of adjacent development). 

• One-way roadway: Team members used Google Earth aerial views to determine whether 
the roadway of interest operated as a one-way facility. 
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Table 36 through table 38 summarize the study variables. 

Table 36. Frequency of different bicycle facilities. 

Bicycle Facility Count 
None 38 
SBL 11 
Total 49 

Table 37. Frequency of different land-use categories. 

Land Use Count 
Commercial/mixed use 6 
Downtown 5 
Manufacturing/industrial 14 
Multifamily 13 
Single family 11 
Total 49 

Table 38. Descriptive statistics of the numerical study variables. 

Variable Mean Standard Deviation Minimum Maximum 
AADB 872.31 836.50 94 3,259 
Population density 12,111.94 9,323.02 2,439 32,933 
Presence of bicycle lane 
(1 = yes) 

0.22 0.42 0 1 

One-way roadway 0.10 0.31 0 1 
ADT 12,510.73 8,703.73 6,300 31,855 
Continuous bicycle lane 0.22 0.42 0 1 
Residential (1 = yes) 0.49 0.51 0 1 
Length (mi) of bicycle lanes 
within 1 mi of the bicycle 
counters 

6.13 5.30 0.28 15.232 

The 2020 AADB decreased consistently for all study sites with available data. Most likely, this 
observed change in bicycle operations was associated with changes in traffic patterns resulting 
from the 2020 pandemic. Therefore, for the subsequent statistical analysis, the variable Year has 
been considered in the modeling process to evaluate the models for any annual significance. 

PRELIMINARY STATISTICAL ASSESSMENT: CORRELATION TEST 

An initial way to assess the potential influence of roadway features and their relationship to the 
AADB is to determine how the individual variables may be correlated. Table 39 shows the 
Pearson’s correlation coefficient test between the numerical variables. The italicized cells in 
table 39 indicate variables that are highly correlated (with values approaching 1.0). For these 
variables, an inclusion term to capture the interaction between variables should be considered if 
both variables are retained in a model. 
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Table 39. Correlation test for Seattle. 

Variable ADT 

Populati
on 

Density 

Presence 
of 

Bicycle 
Lane 

Residential 
Binary 

Continuous 
Bicycle 
Lane 

One-Way 
Road 

Length (mi) of 
Bicycle Lanes 
Within 1 Mi 

of the Counter 
ADT 1 ― ― ― ― ― ― 
Population density 0.06 1 ― ― ― ― ― 
Presence of bicycle 
lane 

–0.09 0.76 1 ― ― ― ― 

Residential binary –0.50 –0.48 –0.54 1 ― ― ― 
Continuous bicycle 
lane 

–0.09 0.76 1.00 –0.54 1 ― ― 

One-way road 0.20 0.08 0.58 –0.32 0.58 1 ― 
Length (mi) of bicycle 
lanes within 1 mi of 
the counter 

–0.04 0.82 0.91 –0.48 0.91 0.55 1 

Note: The italicized cells indicate variables that are highly correlated (with values greater than 0.7). 
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MODELING RESULTS 

The research team explored a variety of statistical techniques for the development of AADB 
predictive models. Ultimately, the research team determined that a mixed-effect Gaussian model 
that used the log(AADB) as the dependent variable and the site number as a random-effect 
variable provided the best predictive fit for the model. The following summary provides an 
overview of this mixed-effect Gaussian process model. 

As an initial step, the research team evaluated a combination of several study variables to 
achieve a reasonable model to predict AADB. The initial mixed-effect Gaussian model included 
all the years of data, including the pandemic year of 2020 (table 40). 

Table 40. Mixed-effect Gaussian model, including 2020 data. 

Parameter Estimate Standard Error df t-Value Pr(>|t|) 
(Intercept) −6.898 2.644 6.173 −2.609 0.03915 
Log(ADT) 1.461 0.286 6.173 5.114 0.002 
Factor(Year)2015 −0.192 0.147 35.046 −1.311 0.198 
Factor(Year)2016 −0.357 0.143 35.107 −2.501 0.017 
Factor(Year)2017 −0.403 0.143 35.107 −2.823 0.008 
Factor(Year)2018 −0.371 0.149 35.211 −2.489 0.018 
Factor(Year)2019 −0.171 0.149 35.211 −1.151 0.257 
Factor(Year)2020 −0.617 0.166 35.449 −3.715 0.0007 

Functional form: log(AADB) ~ log(ADT) + factor(Year) + (1 | Site). 
df = degrees of freedom. 
Note: Random effect variance = 0.188. 

Based on these initial modeling results, the value of log(AADB) increases by increasing the 
log(ADT). The model used 2014 as a base year. The number of bicycles decreased for all the 
years compared to the 2014 base year scenario. In addition, a substantial drop in the coefficient 
for the Year variable for the pandemic year of 2020 was also notable. This observation is 
graphically depicted in figure 19. Based on these observations, the research team then removed 
the 2020 data points from further analysis. This observation is also important because it indicates 
that an analysis based solely on traffic counts from 2020 cannot be expected to provide reliable 
results when contrasted with bicycle volume information from the most recent years before the 
pandemic. 
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Source: FHWA. 

Figure 19. Graph. Change in the Seattle coefficients of variable Year for consecutive years. 

After removing five observations that represented the 2020 data, the team members developed 
another regression model. The results are shown in table 41. As shown in figure 19, a negative 
coefficient suggests a decrease in the volume and an increase in coefficient suggests an increase 
in volume. During 2020, the bicycle usage trends changed significantly. This observation 
suggests that a model without 2020 data may be needed. Additionally, figure 20 depicts the 
residual plot of the model. As provided, an increase in the log(ADT) is similarly associated with 
an increase in the log(AADB). The data showed significantly fewer bicycles for 2016–2018 than 
in 2014, whereas 2015 and 2019 data did not show a significant relationship when compared to 
the AADB. 

Table 41. Mixed-effect Gaussian model excluding 2020 data. 

Parameter Estimate Standard Error df t-Value Pr(>|t|) 
(Intercept) −6.797 2.513 6.016 −2.705 0.035 
Log(ADT) 1.452 0.272 6.020 5.344 0.002 
Factor(Year)2015 −0.192 0.151 31.035 −1.274 0.212 
Factor(Year)2016 −0.367 0.147 31.129 −2.491 0.018 
Factor(Year)2017 −0.413 0.147 31.129 −2.804 0.009 
Factor(Year)2018 −0.380 0.153 31.238 −2.476 0.019 
Factor(Year)2019 −0.181 0.153 31.238 −1.179 0.247 

Functional form: log(AADB) ~ log(ADT) + factor(Year) + (1 | Site). 
Note: Random effect variance = 0.1643; residual variance = 0.07965; restricted maximum likelihood 
(REML) = 40.8. 
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Source: FHWA. 

Figure 20. Graph. Seattle residual plot for model 1 where the dashed line represents the 
mean of observations and the dots represent the individual observations. 

The research team developed a new variable referred to as New Year because the data from years 
2015 and 2019 were not significant in the model compared to the 2014 base year condition. If the 
year of interest was either 2014, 2015, or 2019, then the value of New Year was equal to one. 
Values for New Year for other years had a value of zero. This difference in past years will 
introduce a challenge when trying to use the model to predict future years. However, this model 
does represent the best performing model, but future model evaluations should assess the 
sensitivity of this year-based variable and how it influences predictive capabilities beyond the 
2014–2020 study period. For the current model, the analysts replaced the variable Year with 
New Year and added new variables. This change resulted in the final model that is presented in 
table 42.  

As indicated, an increase in the log(ADT) is associated with a significant increase in the number 
of bicycles. Moreover, the variable New Year shows that the AADB significantly decreased 
during 2016–2018 compared to 2014, 2015, and 2019. Additionally, providing a bicycle lane and 
increasing the population density corresponded to a significant reduction in the AADB value; 
however, the positive sign of the interaction term between the presence of a bicycle lane and 
population density should not be neglected.  
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Table 42. Mixed-effect Gaussian model excluding 2020 data and using New Year. 

Variable Estimate Standard Error df t-Value Pr(>|t|) 
(Intercept) −10.021 2.221 3.051 −4.513 0.020 
Log(ADT) 1.827 0.250 3.044 7.321 0.005 
Presence of bicycle lane −1.896 0.812 3.206 −2.337 0.096 
Population density/1,000 −0.069 0.028 3.002 −2.474 0.090 
Factor(New Year)1 0.257 0.084 35.068 3.075 0.004 
Presence of bicycle lane: 
population density/1,000 

0.115 0.044 3.076 2.632 0.076 

Functional form: log(AADB) ~ log(ADT) + Presence of Bicycle Lane + Population Density/1,000 + Presence of 
Bicycle Lane × Population Density/1,000 + factor(New Year) + (1 | Site). 
Note: Random effect variance = 0.08396; residual variance = 0.07534; REML = 39.3. 

Figure 21 depicts the residual plot model 1 where the dashed line represents the mean of 
observations and the dots represent the individual observations. 

 
Source: FHWA. 

Figure 21. Graph. Residual plot for Seattle model 2 where the dashed line represents the 
mean of observations and the dots represent the individual observations for the New Year 

variable (Seattle model 2). 
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Based on this analysis, the best predictive model is shown in table 42 and represented by 
figure 22. The research identified this model as the most reliable model that could be 
implemented to estimate the AADB based on ADT, New Year variables, presence of bicycle 
lane, and population density.  

 
Figure 22. Equation. Seattle bicycle exposure prediction. 

Where:  
New Year = 1 if predicting for 2014, 2015, or 2019 (otherwise zero). 
Presence of bicycle lane = 1 if a bicycle lane is present (otherwise zero). 
Population density = census tract population density (population/mi2). 
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CHAPTER 7. DEVELOPMENT AND TESTING OF SBL CMFs 

INTRODUCTION 

The goal of this research effort was to determine whether a reliable CMF could be developed for 
SBL facilities. As documented in the previous chapters of this report, the research team 
developed a data collection procedure and then conducted data collection using aerial 
photography, the Street View features of Google Maps, and database information that could be 
acquired for the study sites. Because the team could not physically collect the data (due to the 
pandemic restricting travel), the research team developed bicycle exposure models to represent 
bicycle volumes for the study sites. This CMF development included data from Cambridge; San 
Francisco; and Seattle. The project team also acquired data for Austin, and Denver, for ultimate 
transferability testing of the CMFs. This chapter reviews the CMF development for SBLs. 

STUDY DESIGN 

Cross-Sectional Analysis 

The following two basic designs for observational studies are frequently used in safety 
evaluations: 

• Cross sectional. 
• Before and after (longitudinal). 

The research team pursued a cross-sectional design after identifying the potential data sources, 
their strengths and limitations, and the challenges to collect key variables for a before–after 
evaluation. Particularly, a longitudinal (before–after) design requires knowledge of the date of 
conversion for the studied facilities extending from any prior condition to when the SBL or other 
conditions were implemented. These detailed longitudinal data were not available for this study. 
Additionally, a longitudinal study is generally characterized by the risk of a smaller dataset, 
considering that no guaranties of finding sufficient locations with the exact prior condition that 
were converted to SBL with the same characteristics existed. Finally, a before–after longitudinal 
analysis can suffer from site selection bias because treatments are typically implemented at the 
locations with the greatest need. Therefore, the team selected a cross-sectional analysis that 
allowed the team to develop larger datasets for the cities under study. 

Good observational studies rely on data from sites with and without the study treatment, and the 
data should be assembled in a manner consistent with control-group experiments. To obtain 
sufficient data to develop CMFs for SBL facilities, the research team obtained data for locations 
with SBL facilities and roadways that featured bicycle lanes without SBLs. This approach 
strengthens the analysis by enabling base condition evaluations (bicycle lane with no offset) as 
well as SBLs with additional enhancements. For this study, the best base condition should most 
likely be sites with traditional bicycle lanes, because the vast majority of on-street bicycle 
facilities are traditional configurations. The target configuration would then be SBLs with 
varying vertical elements.  
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Balancing Covariates with Propensity Score (PS) Methods 

Data-matching and data-balancing methods are used to assist causal inference that quantifies the 
impact of a treatment on a response variable (crashes in this case). The principle behind these 
methods is to ensure that untreated locations (i.e., no SBL present) are similar in their 
safety-relevant covariates (e.g., AADT, average daily bicycle traffic (ADBT), number of lanes) 
at the treated locations (i.e., SBL present) in a way that the contrast between the two groups of 
sites is balanced. In that case, the comparison between the two groups of sites should reflect 
safety differences due to the treatment of interest.  

The PS is a metric of similarity between covariates from the cases and can be estimated using 
parametric or nonparametric tools, such as logistic regression or random forest analysis. 

In the case of binary logistic regression, used as a basis for PS estimation, figure 23 shows the 
definition of the conditional probability of a site receiving treatment T. 

 
Figure 23. Equation. Probability equation. 

Where: 
P(Ti|Xi) = the PS denoting the probability of the site i receiving the treatment T. 
Ti = the treatment status of the site i which takes binary values {0, 1}. 
Xi = a vector of covariates that covary with the treatment presence. 
αi = the vector of coefficients through the binary logistic regression. 

In a balanced sample, the distribution of PSs is expected to be similar for treated sites P(TA|XA) 
and comparison sites P(TB|XB). PS matching consists of using some form of PS to inform the 
selection of the data for a study. Alternatively, PS weighting (PSW) consists of using weights in 
the analysis to balance two or more partitions of the data by the variable of interest 
(i.e., treatment or comparison). Balance is achieved by defining appropriate weights for each unit 
of analysis so that they represent an underlying target population of sites. The data are weighted 
based on the probabilities of being in either the comparison or treatment group.(29) The definition 
of the weights selected implies a target population of sites. If all weights are equal, then the 
dataset is implied to be a simple random sample from an actual population of sites. However, 
through the use of appropriate weights, more flexible definitions of the target population are 
possible, as can be found in the statistical literature.(24,30)  



75 

The research team set the target population in this study as the overlap between the treated and 
comparison populations as proposed by Li, Morgan, and Zaslavsky.(31) For this scheme, the 
target population is the set of all sites that have comparable chances to be either in the treatment 
group or in the comparison group. This approach effectively curbs the undue influence of two 
subsets of sites when estimating the average treatment effect of the countermeasure: 

• Comparison sites with characteristics that make the sites unlikely to be candidates for the 
treatment. 

• Treated sites with unusual characteristics for which no comparable comparison sites are 
represented in the data. 

An additional advantage of this choice of target population is a desirable small-sample exact 
balance property. Additionally, the corresponding weights are known to minimize the asymptotic 
variance of the weighted average treatment effect within their class of weights.(31) 

DATA ANALYSIS METHODS 

The research team explored the use of various appropriate generalized linear model (GLM) 
specifications (negative binomial, binomial, or binomial mixtures) as needed by each dataset. 
PSW was implemented using the PSs obtained from the final datasets. 

GLM methods define an appropriate link function to articulate the relationship between the 
response variable distribution (crashes in this case), such as Poisson or negative binomial, and 
the linear function of explanatory variables in the analysis. 

The research team found the number of bicycle crashes to be very small, so they applied 
binomial GLMs to the data after aggregating the crash data to a total count for the complete 
period of analysis. In this instance, the distribution of a response variable Y, indicating the 
number of success observations from a binomial trial (regardless of whether a crash of interest 
has occurred), can be modeled conditional to a set of independent variables X, as shown in 
figure 24. 

 
Figure 24. Equation. Conditional probability of Y value, given explanatory variables and 

site characteristics. 

Where: 
P = the probability of Y taking value yi, given the ith realization of a set of explanatory 

variables X. 
Y = the count of observed crashes of interest, given n trials. 
yi = a particular value in the domain of random count variable Y. 
ni = the reference number of trials for which Y is observed. 
Pi = the probability of a crash in the ith location of interest. 
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For a crash study site i, the logit of pi can be expressed as in figure 25. 

 
Figure 25. Equation. Binomial-lognormal mixed-model parameterization. 

Where: 
ɡ(pi) = the logit function of pi. 
pi = the probability of ith segment. 
X = the vector of independent variables (including key variable in evaluation and other 

safety-influential covariates). 
β = the vector of regression coefficients. 

All model variables were included in the model, either in the exponential form or directly, 
depending on the best fit to each dataset. For clarity, the last term in figure 25 is implicit of 
multiple variables and can be expanded as in figure 26. 

 
Figure 26. Equation. Parameterization of explanatory variables in regression model. 

Where: 
Xp = an independent variable in the model, such as AADT, ADBT, the number of lanes, etc. 
βp = the corresponding estimated coefficient. 

CMF Estimation 

In most cases, the use of regression models to estimate the influence of a dependent variable 
consists of extracting a single parameter estimate and its standard error from the analysis after 
accounting for additional variability in the data due to covariates and an appropriately modeled 
error distribution. However, single-parameter estimation is not possible in every case and, in 
particular for this study, where the estimation often involved contrasting more than one 
coefficient with each other. To estimate the uncertainty of a CMF derived from multiple 
coefficient contrasts, the research team followed CMF development procedures of which the 
basis of these methods is the asymptotically multivariate normal distribution expected from 
maximum-likelihood estimation of multiple variable regression models.(32–34) 

For this procedure, the analyst defines appropriate linear combinations of the coefficient 
estimates from each of the best models to statistically assess their resulting value for select 
scenarios. These linear combinations imply predicted crashes for both the before condition 
(e.g., no SBL and some base condition) and the after condition (e.g., SBL present or type of 
SBL). The contrast between these conditions then yields an estimate of the CMF of interest. In 
general, producing the CMF estimate for the scenario is straightforward. To produce the 
corresponding standard error for a given scenario with covariate vectors XB and XA representing 
the before and after conditions, respectively, the contrast of covariate vectors and the maximum 
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likelihood model-inversed-information matrix ∑ define the CMF standard error, as indicated in 
figure 27. 

 
Figure 27. Equation. Standard error for contrast in log scale. 

Where: 
SE = represents the calculated model standard error. 
CMF = the crash modification factor to be developed. 
XA and X’A are the values after an intervention, such as crash results after constructing 

intervention such as an SBL. 
XB and X’B are the values before an intervention, such as crash results before constructing 

intervention such as an SBL 
Xp = an independent variable in the model, such as AADT, ADBT, the number of lanes, etc. 
∑ = summation of the model effects. 

Contrasts of Interest for CMF Development 

For this research, the team members constructed contrasts representing a progression of 
information to be gathered in the form of CMFs. The analysis included the following steps: 

1. In the first hierarchical level, the team developed models that allowed them to test 
research questions involving sites with any type of SBL and other sites without SBLs. 
Depending on the data available, multiple contrasts were constructed at this hierarchical 
level: 

a. SBL versus traditional bicycle lane. 

b. SBL versus buffered bicycle lane. 

c. Buffered versus traditional bicycle lane. 

2. In the second hierarchical level, the team expanded the models to allow testing 
differences between sites with specific types of SBLs and other sites without SBLs. 
Again, data availability determined which of the following contrasts were available for 
estimation in each case: 

a. Flexi-post SBL versus traditional bicycle lane. 

b. Flexi-post SBL versus buffered bicycle lane. 

c. Flexi-post SBL versus traditional or buffered bicycle lane. 

d. Blended type SBL versus traditional bicycle lane. 

e. Blended type SBL versus buffered bicycle lane. 
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f. Blended type SBL versus traditional or buffered bicycle lane. 

g. Flexi-post SBL versus blended type SBL. 

h. Flexi-post SBL or blended type SBL versus traditional bicycle lane. 

i. Flexi-post SBL or blended type SBL versus buffered bicycle lane. 

j. Flexi-post SBL or blended type SBL versus traditional or buffered bicycle lane. 

All analyses were conducted using open-source programming software for statistical computing 
and graphics. 

SEGMENT ANALYSIS RESULTS 

The analyses used bicycle crashes as the response variable. As previously noted, the data from 
three cities, listed in the order in which the analysis was conducted, were used in this effort: 
San Francisco, Cambridge, and Seattle. For each city, the data were separated in two subsets: 
segments and intersections. The following sections document analyses and results, first by the 
different city datasets developed for this research and then as a combined dataset. The research 
team did not successfully develop CMFs for intersections or corridors with SBLs. 

San Francisco Segment Analysis 

Table 43 shows the number of segments with bicycle lane characteristics per direction of travel. 

Table 43. Number of segments by bicycle lane type per direction in San Francisco 
(N = 384). 

Variable 
Bicycle Lane 
(Direction 2) 

Buffered 
(Direction 2) 

Vertical Element 
(Direction 2) 

Bicycle lane 
(direction 1) 

266 5 9 

Buffered (direction 1) 4 45 10 
Vertical element 
(direction 1) 

7 10 28 
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Table 44 shows the results for the most parsimonious model of potential bicycle crashes, when 
considering only contrasts that involve any type of SBL. The research team adjusted up 
(i.e., increased) the estimated standard errors via the quasi-likelihood estimation method to 
capture the increased uncertainty implied by overdispersion because they found binomial 
overdispersion in the residuals of this model. 

Table 44. Initial model coefficient estimates for potential bicycle crashes in San Francisco 
(N = 384 segments). 

Parameter Estimate Standard Error t-value Pr(>|t|) Significance 
(Intercept) 2.761 2.6572 1.039 0.299 — 
Industrial land use −0.605 0.3817 −1.586 0.114 — 
Mixed land use 1.781 0.5794 3.075 0.002 ** 
Public land −0.824 0.8977 −0.917 0.360 — 
Residential 0.870 0.6626 1.314 0.190 — 
Log(Length) −1.089 0.4930 −2.208 0.028 * 
Length 0.002 0.0010 2.202 0.028 * 
One MV lane in each 
direction 

−0.027 0.3046 −0.088 0.930 — 

Two MV lanes in each 
direction 

0.530 0.2686 1.974 0.049 * 

No parking in one or both 
directions  

−0.666 0.2808 −2.370 0.018 * 

Area bicycle = 1 0.108 0.1964 0.550 0.583 — 
Area bicycle = 2 1.125 0.3457 3.255 0.001 ** 
log (AADB+0.5) −0.559 0.1767 −3.167 0.002 ** 
AADB 0.011 0.0027 4.130 <0.001 *** 
Traditional bicycle lane 
(both directions) 

0.254 0.4317 0.589 0.556 — 

Buffered bicycle lane 
(both directions) 

0.197 0.5127 0.383 0.702 — 

SBL (either direction) −0.479 0.4951 −0.968 0.334 — 
—Not statistically significant. 
*Statistically significant at the 0.05 level. 
**Statistically significant at the 0.01 level. 
***Statistically significant at the 0.001 level. 

In general, the results in table 44 indicate the following factors: 

• Bicycle crash risk increases at mixed land-use locations and potentially decreases at 
industrial land use, compared to other location types. 

• Bicycle crash risk increases at locations with two MV lanes per direction, compared to 
locations with more MV lanes per direction. 
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• Bicycle crashes decrease where no parking is permitted in one or both directions of 
travel. This analysis estimated that bicycle crash risk at segments with no parking on 
either side is about half as large as for segments allowing parking, other things being 
equal (0.514 odds ratio estimated as 0.514 = exp(–0.666)). 

• Bicycle crash risk increases at locations where Area Bicycle has a 2.0 value (meaning two 
directions where bicycle lanes are parallel and adjacent to the segment of analysis). This 
value could be a surrogate indicator of bicycle travel exposure, in addition to the AADB 
estimated values. 

• In the cases of segment length and AADB, the direction of the relationship is not 
immediately apparent because two coefficients are involved with these variables. 
Figure 28 shows these relationships.  

• Figure 29 depicts the relationships between AADB and bicycle crashes. Both 
relationships are increasing for most of the range of the two variables, except for the 
lower extreme of the two curves (i.e., segments shorter than 500 ft and AADBs 
approaching zero). 

 
Source: FHWA. 

Figure 28. Graph. Model San Francisco relationship between length and bicycle crashes. 
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Source: FHWA. 

Figure 29. Graph. Model San Francisco relationships between AADB and bicycle crashes. 

Next, the research team estimated CMFs defining appropriate contrasts involving the last three 
coefficients in table 44, as shown in table 45. 

Table 45. Basic CMFs for bicycle crashes in San Francisco. 

Condition CMF Estimate Standard Error  p-Value Significance 
Flush buffera 0.944 −0.0577 0.2664 0.8284 — 
Vertical elementa 0.509 −0.6758 0.3399 0.0468 * 
Vertical elementb 0.480 −0.7336 0.2417 0.0024 ** 
Vertical elementc 0.494 −0.7047 0.2631 0.0074 ** 

—Not statistically significant. 
*Statistically significant at the 0.05 level. 
**Statistically significant at the 0.01 level. 
aBase condition: traditional bicycle lane. 
bBase condition: flush buffered bicycle lane. 
cBase condition: traditional or flush buffered bicycle lane. 

All results in table 45 indicate statistically significant bicycle crash reductions for the presence of 
vertical elements as a separation of bicycle lanes from traffic. Compared to traditional bicycle 
lanes, SBLs are estimated to experience 49.1 percent fewer bicycle crashes (0.509 CMF 
statistically significant at the 0.05 significance level). Similarly, SBLs are estimated to 
experience 52.0 percent fewer bicycle crashes compared to bicycle lanes with flush buffers, 
(0.480 CMF statistically significant at the 0.01 significance level). When compared with 
locations with either traditional bicycle lanes or with flush buffers, this analysis also found that 
SBLs experience 50.6 percent fewer bicycle crashes (0.494 CMF statistically significant at the 
0.01 significance level). Finally, although the analysis estimated bicycle lanes with flush buffers 
to perform better than traditional bicycle lanes, the estimate of that comparison was statistically 
insignificant (0.828 p-value for 0.944 CMF estimate). 
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Next, the research team proceeded to reestimate the model in table 44 to include differentiation 
between SBL types. Flexible posts and blended treatments were the two types of vertical element 
with enough representation in the San Francisco dataset to consider for CMF development. 
Accordingly, the refitted model included appropriate terms for these considerations. Table 46 
shows the results of the model with these additions. 

Table 46. Coefficient estimates for bicycle crash risk in San Francisco (N = 384 segments). 

Parameter Estimate Standard Error t-value Pr(>|t|) Significance 
(Intercept) 3.306 2.6537 1.246 0.2137 — 
Industrial land use −0.655 0.3798 −1.725 0.0854 ~ 
Mixed land use 1.831 0.5791 3.161 0.0017 ** 
Public land −0.820 0.9087 −0.902 0.3675 — 
Residential 0.952 0.6638 1.434 0.1525 — 
Log(Length) −1.194 0.4878 −2.447 0.0149 * 
Length 0.002 0.0010 2.369 0.0183 * 
One MV lane in each 
direction 

0.457 0.2721 1.681 0.0937 ~ 

Two MV lanes in 
each direction 

−0.091 0.3043 −0.299 0.7655 — 

No parking in one or 
both directions  

−0.567 0.2865 −1.979 0.0486 * 

Area bicycle = 1 0.155 0.1976 0.786 0.4324 — 
Area bicycle = 2 1.135 0.3413 3.326 0.0010 *** 
Log(AADB+0.5) −0.595 0.1787 −3.33 0.0010 *** 
AADB 0.012 0.0028 4.348 <0.0001 *** 
Traditional bicycle 
lane (both directions) 

0.338 0.4318 0.782 0.4348 — 

Buffered bicycle lane 
(both directions) 

0.254 0.5102 0.497 0.6195 — 

SBL (either 
direction) 

0.536 0.9615 0.557 0.5776 — 

Blended vertical 
elements (either 
direction) 

−0.618 0.8132 −0.759 0.4482 — 

Flexi-post vertical 
elements (either 
direction) 

−1.325 0.8192 −1.618 0.1066 — 

—Not statistically significant. 
~Statistically significant at the 0.1 level. 
*Statistically significant at the 0.05 level. 
**Statistically significant at the 0.01 level. 
***Statistically significant at the 0.001 level. 

Table 46 also shows that the addition of specific coefficients for the two types of vertical 
elements had a minimal effect on the rest of the coefficients in the initial model. Additionally, 
the two new coefficients clearly indicate reductions in bicycle crash risk (i.e., negative 
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estimates), and safety performance seems to improve approximately twofold for flexible posts 
compared to blended vertical elements. Like the initial model, table 47 shows the corresponding 
CMF contrasts that can be constructed from the updated model. 

Table 47. Detailed CMFs for bicycle crashes in San Francisco. 

Condition CMF Estimate 
Standard 

Error  p-Value Significance 
Flush buffera 0.919 −0.0841 0.2675 0.7533 — 
Flexible postsa 0.324 −1.1269 0.3519 0.0014 ** 
Flexible postsb 0.352 −1.0428 0.4141 0.0118 * 
Flexible postsc 0.338 −1.0849 0.3602 0.0026 ** 
Blendeda 0.658 −0.4192 0.2771 0.1304 — 
Blendedb 0.715 −0.3351 0.3732 0.3692 — 
Blendedc 0.686 −0.3772 0.3003 0.2091 — 
Flexible postsd 0.493 −0.7077 0.3805 0.0629 ~ 
Flexible posts or 
blendeda 

0.462 −0.7730 0.2532 0.0023 ** 

Flexible posts or 
blendedb 

0.502 −0.6890 0.3453 0.0460 * 

Flexible posts or 
blendedc 

0.481 −0.7310 0.2716 0.0071 ** 

—Not statistically significant. 
~Statistically significant at the 0.1 level. 
*Statistically significant at the 0.05 level. 
**Statistically significant at the 0.01 level. 
aBase condition: traditional bicycle lane. 
bBase condition: flush buffered bicycle lane. 
cBase condition: traditional or flush buffered bicycle lane. 
dBase condition: blended vertical element. 

As table 47 shows, the analysis determined that only some of the tested CMFs were statistically 
significant. The first and last three CMFs in table 47 should roughly correspond to the treatments 
and base conditions for the CMFs in table 45. Indeed, the corresponding estimates and standard 
errors in both tables are similar in magnitude. In addition to those comparable CMFs, the results 
in table 47 indicate statistically significant reductions in bicycle lane crash risks for flexi-post 
SBLs and either flexi-post or blended SBLs. For blended SBLs alone, the estimates suggest 
bicycle crash reductions, but those three CMFs were found to be statistically insignificant. 
Finally, table 47 also shows that the estimated CMF for flexi-post SBL versus blended SBL 
indicates a statistically significant reduction in bicycle crash risk (0.629 p-value for 0.493 CMF, 
statistically significant at the 0.10 level). 

Cambridge Segment Analysis 

Table 48 shows the observed conditions in the database, which includes 132 traditional bicycle 
lane sites, 23 buffered sites, and 24 vertical element sites (with buffer). Table 49 shows the 
results for the most parsimonious model of bicycle crash risk that does not include differentiation 
by type of SBL. In the case of Cambridge, the research team found no binomial overdispersion in 
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the crash data, so they derived the estimates and standard errors from a maximum likelihood 
estimation model with binomially distributed response. 

Table 48. Segments by bicycle lane condition per direction in Cambridge (N = 179). 

Variable 
Bicycle Lane 
(Direction 2) 

Buffered 
(Direction 2) 

Vertical Element 
(Direction 2) 

Bicycle lane (direction 1) 132 0 0 
Buffered (direction 1) 0 23 0 
Vertical element 
(direction 1) 

0 0 24 

Table 49. Coefficient estimates for bicycle crashes in Cambridge (N = 179 segments). 

Parameter Estimate Standard Error z-Value Pr(>|t|) Significance 
(Intercept) −3.405 3.0172 −1.129 0.2591 — 
Open space land use −1.678 0.6973 −2.4060 0.0161 * 
Log(AADT+05) 0.034 0.0341 1.0020 0.3165 — 
Length 0.001 0.0004 2.2870 0.0222 * 
Log(AADB+0.5) −0.053 0.5653 −0.0940 0.9251 — 
No parking in one or 
both directions  

0.268 0.2184 1.2290 0.2191 — 

Traditional bicycle lane 
(both directions) 

−0.207 0.6279 −0.3300 0.7413 — 

Buffered bicycle lane 
(both directions) 

−0.814 0.8093 −1.0050 0.3147 — 

SBL (either direction) −1.035 0.9119 −1.1350 0.2564 — 
—Not statistically significant. 
*Statistically significant at the 0.05 level. 

The results in table 49 differ from the results in San Francisco in various ways. In general, the 
Cambridge results indicate the following factors: 

• Bicycle crashes significantly decrease at locations where the land use is open space, 
compared to other location types. 

• The impact of AADB in bicycle crashes was found null in contrast with San Francisco, 
where crashes increased with increasing AADB. 

• Bicycle crash risk increases with increasing segment length. The researchers found 
similar findings with the San Francisco model. 

Next, the research team estimated CMFs defining appropriate contrasts from the Cambridge 
model, as shown in table 50. 
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Table 50. CMFs for bicycle crashes in Cambridge. 

Condition CMF Estimate Standard Error  p-Value Significance 
Flush buffera 0.545 −0.6065 0.5022 0.2272 — 
Vertical elementa 0.437 −0.8276 0.7115 0.2447 — 
Vertical elementb 0.802 −0.2212 0.8606 0.7972 — 
Vertical elementc 0.592 −0.5244 0.7486 0.4836 — 

—Not statistically significant. 
aBase condition: traditional bicycle lane. 
bBase condition: flush buffered bicycle lane. 
cBase condition: traditional or flush buffered bicycle lane. 

All results in table 50 indicate statistically insignificant bicycle crash reductions for conditions 
other than a traditional bicycle lane. This finding can be contrasted with the San Francisco results 
whereby CMFs indicated the presence of vertical element was statistically significant. The 
sample size for the Cambridge data is smaller, which could explain the lack of statistical 
significance. The results, however, are in the direction of, and with similar magnitudes to, the 
San Francisco CMFs. 

The research team attempted fitting an expanded model, including differentiation by SBL type, 
similar to San Francisco; however, due to the smaller sample size for Cambridge and as shown 
when contrasting the relative size of the standard errors in table 45 and table 50, the variance of 
the estimates at least doubles for the Cambridge dataset. For that reason, the research team did 
not compute more specific CMFs for this dataset. 

San Francisco and Cambridge Combined Segment Analysis 

The researchers anticipated that the combined dataset between San Francisco and Cambridge 
was large enough to support a model with differentiation between SBL by vertical element type, 
so they directly developed a model that included San Francisco and Cambridge in addition to 
individual State models. Table 51 shows the coefficient estimates for the most parsimonious 
model of bicycle crash risk. The research team did not find binomial overdispersion in the 
combined dataset, so no adjustments were warranted for the estimates and standard errors in this 
case. 

Table 51. Coefficient estimates for bicycle crash risk in San Francisco and Cambridge 
(N = 563 segments). 

Parameter Estimate Standard Error z-Value Pr(>|t|) Significance 
(Intercept) 0.576 1.5527 0.370 0.7106 — 
Industrial land use −0.848 0.2650 −3.1990 0.0014 ** 
Mixed land use 0.956 0.2256 4.2370 <0.0001 *** 
Public land −1.872 0.5807 −3.2230 0.0013 ** 
Residential −0.021 0.2533 −0.0830 0.9342 — 
Log(Length) −0.669 0.2827 −2.3660 0.0180 * 
Length 0.002 0.0006 2.5630 0.0104 * 
One MV lane in each 
direction 

0.469 0.1864 2.5160 0.0119 * 
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Parameter Estimate Standard Error z-Value Pr(>|t|) Significance 
Two MV lanes in 
each direction 

0.119 0.2072 0.5730 0.5664 — 

No parking in one or 
both directions  

−0.264 0.1639 −1.6120 0.1069 — 

Area bicycle = 1 0.148 0.1322 1.1210 0.2622 — 
Area bicycle = 2 0.905 0.2497 3.6230 0.0003 *** 
Log(AADB+0.5) −0.497 0.1412 −3.5180 0.0004 *** 
AADB 0.008 0.0015 5.5120 <0.0001 *** 
Traditional bicycle 
lane (both directions) 

0.177 0.3227 0.5490 0.5832 — 

Buffered bicycle lane 
(both directions) 

−0.097 0.3797 −0.2540 0.7992 — 

SBL (either 
direction) 

−0.167 0.6628 −0.2520 0.8014 — 

Blended vertical 
elements (either 
direction) 

−0.119 0.5778 −0.2060 0.8366 — 

Flexi-post vertical 
elements (either 
direction) 

−0.944 0.5840 −1.6160 0.1061 — 

City = San Francisco 0.891 0.1891 4.711 <0.0001 *** 
—Not statistically significant. 
***Statistically significant at the 0.001 level. 

The resulting coefficients are comparable to the ones obtained for San Francisco only. 
Additionally, when the site characteristics are comparable, this analysis found that the bicycle 
crash risk for San Francisco is roughly twice that for Cambridge (0.0004 p-value for a 0.668 
estimate corresponding to an odds ratio of exp(0.668) = 1.950). Table 52 shows the estimated 
CMFs for various bicycle lane configurations derived from the model in table 51. 
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Table 52. CMFs for bicycle crashes in San Francisco and Cambridge. 

Condition CMF Estimate Standard Error  p-Value Significance 
Flush buffera 0.761 −0.2737 0.2218 0.2172 — 
Flexible postsa 0.276 −1.2875 0.3272 0.0001 *** 
Flexible postsb 0.363 −1.0139 0.3796 0.0076 ** 
Flexible postsc 0.316 −1.1507 0.3366 0.0006 *** 
Blendeda 0.629 −0.4629 0.2760 0.0935 ~ 
Blendedb 0.828 −0.1893 0.3458 0.5842 — 
Blendedc 0.722 −0.3261 0.2925 0.2650 — 
Flexible postsd 0.438 −0.8246 0.3808 0.0303 * 
Flexible posts or 
blendeda 

0.417 −0.8752 0.2353 0.0002 *** 

Flexible posts or 
blendedb 

0.548 −0.6016 0.3092 0.0517 ~ 

Flexible posts or 
blendedc 

0.478 −0.7384 0.2514 0.0033 ** 

—Not statistically significant. 
aBase condition: traditional bicycle lane. 
bBase condition: flush buffered bicycle lane. 
cBase condition: traditional or flush buffered bicycle lane. 
dBase condition: blended vertical element. 
~Statistically significant at the 0.1 level. 
*Statistically significant at the 0.05 level. 
**Statistically significant at the 0.01 level. 
***Statistically significant at the 0.001 level. 

The results are comparable to the results found in the San Francisco analysis albeit with a bigger 
combined sample size. This analysis found the CMFs for blended SBLs compared to traditional 
bicycle lanes was statistically significant, in addition to the same CMFs that were found 
significant in table 47. 

Summary of SBL CMF Findings 

The CMFs for SBLs show a clear trend in that with their implementation, a transportation agency 
can expect to see a reduction in bicycle crashes. The individual State models suffer from smaller 
sample sizes; however, they continue to result in estimated crash reductions consistent with those 
found with larger sample sizes. The combination of data from different States also results in 
similar trends and, for the most part, greater statistical significance. For the baseline conditions, 
the use of traditional bicycle lanes, bicycle lanes with buffers but no vertical elements, or bicycle 
lanes with a combination of traditional and buffers resulted in generally similar trends. The SBL 
treatments that were the most effective included flexi-post treatments and blended treatments 
(most often flexible posts and other vertical elements). Table 53 summarizes how the CMF 
values changed as the models were merged. This summary begins with San Francisco models 
only and then transitions to the merged model of San Francisco and Cambridge. The final 
merged State model included data from San Francisco, Cambridge, and Seattle. Generally, the 
resulting CMFs had a value of approximately 0.48. This value is a multiplicative factor that 
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indicates a decrease in bicycle crashes of approximately 52 percent should be expected when 
bicycle lanes that are traditional or buffered are converted to SBL facilities. 

This study included an analysis that focused on roadway segments. The research team assessed 
the prospect of using intersection-only and corridor-type models but found that for the available 
dataset, these two options did not yield statistically viable results. 

Table 53. Summary of SBL CMF values for roadway segments. 

Baseline 
Condition 

Model CMF 
Treatment 

San Francisco 
Only 

San Francisco 
+ Cambridge 

San Francisco 
+ Cambridge 

+ Seattle 
Suggested 

CMF 
Traditional 
bicycle lane 

Vertical 
element 
(varies) 

0.509 — — 0.51 

Traditional 
bicycle lane 

Flexible 
posts 

0.324 0.276 0.498 0.28–0.50 

Traditional 
bicycle lane 

Flexible 
posts or 
blended 

0.462 0.417 0.640 0.42–0.64 

Flush 
buffered 
bicycle lane 

Vertical 
element 
(varies) 

0.480 — — 0.48 

Flush 
buffered 
bicycle lane 

Flexible 
posts 

0.352 0.363 0.441 0.35–0.44 

Flush 
buffered 
bicycle lane 

Flexible 
posts or 
blended 

0.502 0.548 0.567 0.50–0.57 

Traditional 
bicycle lane 
or flush 
buffered 
bicycle lane 

Vertical 
element 
(varies) 

0.494 — — 0.49 

Traditional 
bicycle lane 
or flush 
buffered 
bicycle lane 

Flexible 
posts 

0.338 0.316 0.468 0.32–0.47 

Traditional 
bicycle lane 
or flush 
buffered 
bicycle lane 

Flexible 
posts or 
blended 

0.481 0.478 0.602 0.48–0.60 
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Seattle Segment Analysis 

Table 54 shows the number of segments with bicycle lane characteristics per direction of travel. 

Table 54. Number of segments by bicycle lane condition per direction in Seattle (N = 660). 

Variable 
Bicycle Lane 
(Direction 2) 

Buffered 
(Direction 2) 

Vertical Element 
(Direction 2) 

Bicycle lane (direction 1) 484 4 10 
Buffered (direction 1) 7 46 8 
Vertical element (direction 1) 19 11 71 

Table 55 shows the results for the most parsimonious model in Seattle of bicycle crash risk that 
does not include differentiation by SBL type. Similar to their findings with the Cambridge data, 
the research team found no binomial overdispersion in the Seattle crash data, so the model results 
reflect estimates and standard errors derived from a maximum likelihood estimation model with 
a binomially distributed response. 

Table 55. Coefficient estimates for bicycle crash risk in Seattle (N = 660 segments). 

Parameter Estimate Standard Error z-Value Pr(>|t|) Significance 
(Intercept) −141.086 57.2177 −2.466 0.0137 * 
Multi- or single-family 
land use 

−1.0370 0.2186 −4.7440 <0.0001 *** 

Area bicycle = 1 1.0985 0.3247 3.3840 0.0007 *** 
Area bicycle = 2 0.1711 0.3493 0.4900 0.6242 — 
log(ADT_1 + 0.5) 0.9394 0.2912 3.2270 0.0013 ** 
log(Length) 0.8965 0.1932 4.6410 <0.0001 *** 
log(AADB + 0.5) 26.1612 11.3722 2.3000 0.0214 * 
AADB −0.0799 0.0286 −2.7970 0.0052 ** 
Traditional bicycle lane 
(both directions) 

−0.1207 0.4166 −0.2900 0.7719 — 

Buffered bicycle lane 
(both directions) 

−0.5266 0.4926 −1.0690 0.2850 — 

SBL (both directions) −0.4120 0.8554 −0.4820 0.6301 — 
—Not statistically significant. 
*Statistically significant at the 0.05 level. 
**Statistically significant at the 0.01 level. 
***Statistically significant at the 0.001 level. 
ADT_1 = Vehicles per day (exclusive only to the San Francisco traffic exposure). 

The results in table 55 in general indicate the following factors: 

• Bicycle crashes significantly decrease at locations where the land use is multi- or single 
family, compared to other land use types. 

• Bicycle crash risk increases with increasing segment length, similar to the other two 
cities. 
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• Bicycle crash risk increases with increasing ADT_1. 

The impact of AADB in bicycle crashes is strong, depending on the bicycle crash risk and 
AADB values. Figure 30 depicts the multiplicative effect of AADB on bicycle crash risk for 
Seattle. 

 
Source: FHWA. 

Figure 30. Graph. Seattle model relationships between AADB and bicycle crashes. 

The model attributes a complex relationship with bicycle crash risk to AADB: Null from 100 to 
200 bicycles/day, increasing from 200 to 330 bicycles/day, and decreasing from 330 to 500 
bicycles/day. Next, the research team estimated CMFs defining appropriate contrasts from the 
Seattle model, as shown in table 56. 

Table 56. CMFs for bicycle crashes (Seattle). 

Condition CMF Estimate Standard Error  p-Value Significance 
Flush buffera 0.666 −0.406 0.354 0.251 — 
Vertical elementa 1.121 0.115 0.813 0.888 — 
Vertical elementb 0.747 −0.291 0.765 0.703 — 
Vertical elementc 0.915 −0.088 0.769 0.909 — 

—Not statistically significant. 
aBase condition: traditional bicycle lane. 
bBase condition: flush buffered bicycle lane. 
cBase condition: traditional or flush buffered bicycle lane. 

All results in table 56 indicate statistically insignificant bicycle crash reductions compared to 
traditional bicycle lanes, similar to Cambridge and in contrast to San Francisco. 
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Next, the research team proceeded to reestimate the model shown in table 56, which includes 
differentiation between SBL types. Flexible posts and blended treatments were the two types of 
vertical elements with enough representation in the Seattle dataset to consider for CMF 
development. Accordingly, the refitted model included appropriate terms for these 
considerations. Table 57 shows the results of the model with these additions. 

Table 57. Coefficient estimates for bicycle crash risk in Seattle (N = 660 segments). 

Parameter Estimate Standard Error t-value Pr(>|t|) Significance 
(Intercept) −136.820 61.309 −2.232 0.0256 * 
Multi- or single-family 
land use 

−1.039 0.222 −4.679 <0.0001 *** 

Area_bicycle=1 1.093 0.334 3.271 0.001 ** 
Area_bicycle=2 0.166 0.351 0.472 0.637 — 
log(ADT_1+0.5) 0.928 0.296 3.139 0.002 ** 
log(Length) 0.895 0.193 4.627 <0.0001 *** 
log(AADB + 0.5) 25.333 12.180 2.080 0.038 * 
AADB −0.078 0.031 −2.514 0.012 * 
Traditional bicycle lane 
(both directions) 

−0.192 0.599 −0.321 0.748 — 

Buffered bicycle lane 
(both directions) 

−0.591 0.623 −0.948 0.343 — 

SBL (both directions) −0.351 0.945 −0.372 0.710 — 
Blended vertical elements 
(either direction) 

−0.274 1.476 −0.186 0.853 — 

Flexi-post vertical 
elements (either direction) 

−0.076 0.796 −0.095 0.924 — 

No parking in one or both 
directions 

−0.038 0.241 −0.156 0.876 — 

—Not statistically significant. 
*Statistically significant at the 0.05 level. 
**Statistically significant at the 0.01 level. 
***Statistically significant at the 0.001 level. 

The addition of specific coefficients for the two types of vertical elements had little impact on 
the rest of the coefficients in the initial model. The two new coefficients indicate reductions in 
bicycle crash risk (i.e., negative estimates), though these reductions are not statistically 
significant. Additionally, based on statistical analysis, the safety performance of flexible posts is 
slightly worse when compared to blended vertical elements. Table 58 shows the corresponding 
CMF contrasts that can be constructed from the updated model. This observation may be an 
artifact of the higher number of blended treatments than solitary SBL treatments. 

All CMFs in table 58 are statistically insignificant. The following section uses a merged database 
using data from the three cities to produce updated CMFs. 
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Table 58. Reestimation of CMFs for bicycle crashes in Seattle. 

Condition CMF Estimate Standard Error  p-Value Significance 
Flush buffera 0.671 −0.399 0.358 0.265 — 
Flexible postsa 0.791 −0.235 0.836 0.779 — 
Flexible postsb 1.178 0.164 0.883 0.853 — 
Flexible postsc 0.965 −0.035 0.841 0.966 — 
Blendeda 0.649 −0.433 1.327 0.744 — 
Blendedb 0.966 −0.034 1.358 0.980 — 
Blendedc 0.792 −0.234 1.330 0.861 — 
Flexible postsd 1.219 0.198 1.404 0.888 — 
Flexible posts or 
blendeda 

0.716 −0.334 0.859 0.698 — 

Flexible posts or 
blendedb 

1.067 0.065 0.905 0.943 — 

Flexible posts or 
blendedc 

0.874 −0.134 0.864 0.876 — 

—Not statistically significant. 
aBase condition: traditional bicycle lane. 
bBase condition: flush buffered bicycle lane. 
cBase condition: traditional or flush buffered bicycle lane. 
dBase condition: blended vertical element. 

San Francisco, Seattle, and Cambridge Combined Segment Analysis 

The researchers anticipated that the combined dataset between the three cities was large enough 
to support a model with differentiation between SBL by vertical element type, so they developed 
that model directly and did not depend on the models for the individual State. A visual inspection 
of the data in the combined dataset indicated that some fields were incomplete. In particular, 
several sites did not have an ADT value greater than zero. However, some of the AADB values 
were equal to zero because the bicycle exposure models use ADT as an input. Without additional 
information about the ADT, the team decided to remove all segments with either AADB or ADT 
having values of zero. Table 59 shows the coefficient estimates for the most parsimonious 
binomial model of bicycle crash risk using the combined data from the three cities. 

Multiple factors were found to be statistically significant for bicycle crash risk, as table 59 
shows. Additionally, after considering the impacts of other key variables, this analysis found 
remaining differences in bicycle crash risk for the three cities and in their relationship with 
AADB. In general, the analysis indicates the following factors: 

• Bicycle crash risk is higher at locations with mixed land use. 

• Bicycle crash risk is lower at locations with industrial or public land use. 

• Bicycle crash risk is lower at locations with more MV lanes. The research team estimated 
that for each additional MV lane, bicycle crash risk decreases by a factor of 0.745 
(0.745 = exp(–0.295)) when compared to roads with similar physical characteristic. 
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• Bicycle crash risk is lower at locations where parking is not permitted in at least one 
direction. The researchers estimated that bicycle crash risk at those locations is smaller by 
a factor of 0.718 (0.718 = exp(–0.331)), compared with locations without parking 
restrictions, other things unchanged. 

Table 59. Coefficient estimates for bicycle crash risk in San Francisco, Seattle, and 
Cambridge (N = 1,223 segments). 

Parameter Estimate 
Standard 

Error t-value Pr(>|t|) Significance 
(Intercept) −2.826 3.0524 −0.926 0.3545 — 
Mixed land use 0.985 0.1362 7.2340 <0.0001 *** 
Industrial land use −0.708 0.2173 −3.2560 0.0011 ** 
Public land use −1.826 0.5016 −3.6410 0.0003 *** 
log(Length) −0.378 0.2274 −1.6640 0.0962 ~ 
Length 0.001 0.0005 3.0320 0.0024 ** 
log(ADT_1 + 0.5) 0.093 0.0303 3.0570 0.0022 ** 
Area bicycle=1 0.271 0.1170 2.3160 0.0206 * 
Area bicycle=2 0.655 0.1992 3.2890 0.0010 ** 
log(AADB + 0.5) −0.028 0.5565 −0.0500 0.9602 — 
log(AADB + 
0.5):CitySEA 

−6.958 1.0838 −6.4200 <0.0001 *** 

log(AADB + 
0.5):CitySFO 

−0.580 0.5449 −1.0640 0.2874 — 

AADB 0.008 0.0012 6.6830 <0.0001 *** 
No parking in one or 
both directions 

−0.331 0.1285 −2.5760 0.0100 * 

Number of total MV 
lanes 

−0.295 0.0602 −4.9000 <0.0001 *** 

CitySEA 40.215 6.2917 6.2917 <0.0001 *** 
CitySFO 3.692 2.8003 1.318 0.1874 — 
Traditional bicycle lane 
(both directions) 

−0.167 0.2866 −0.5840 0.5591 — 

Buffered bicycle lane 
(both directions) 

−0.047 0.3202 −0.1460 0.8841 — 

SBL (either direction) 0.252 0.4879 0.5160 0.6058 — 
Blended vertical 
elements (either 
direction) 

−0.615 0.4227 −1.4550 0.1457 — 

Flexi-post vertical 
elements (either 
direction) 

−1.117 0.4241 −2.6340 0.0084 ** 

—Not statistically significant. 
~Statistically significant at the 0.1 level. 
*Statistically significant at the 0.05 level. 
**Statistically significant at the 0.01 level. 
***Statistically significant at the 0.001 level. 
CitySEA = City of Seattle; CitySFO = City of San Francisco. 
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The relationships between bicycle crash risk, segment length, and AADB were captured by 
multiple coefficients, so the trends are not immediately apparent. The plots in figure 31 and 
figure 32 demonstrate the trend lines for these two variables for Cambridge, whereas figure 33 
and figure 34 represent the San Francisco and Seattle trends for AADB contrasted to bicycle 
crash risk. 

 
Source: FHWA. 

Figure 31. Graph. Model relationships and the influence of length on bicycle crashes for 
Cambridge. 
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Source: FHWA. 

Figure 32. Graph. Model relationships between AADB and bicycle crashes for Cambridge. 

The line on the graph for figure 33 shows that the relationship between AADB and bicycle 
crashes is exponential for San Francisco. 
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Source: FHWA. 

Figure 33. Graph. Model relationships between AADB and bicycle crashes for 
San Francisco. 

 
Source: FHWA. 

Figure 34. Graph. Model relationships between AADB and bicycle crashes for Seattle. 
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In general, the bicycle crash risk increased with the increasing segment length, except for very 
short segments (lengths shorter than 100 ft), where the trend was reversed. Table 60 shows the 
estimated CMFs for various bicycle lane configurations derived from the model in table 59. 

Table 60. CMFs for bicycle crashes in San Francisco, Seattle, and Cambridge. 

Condition CMF Estimate Standard Error  p-Value Significance 
Flush buffera 1.128 0.121 0.173 0.484 — 
Flexible postsa 0.498 −0.698 0.264 0.008 ** 
Flexible postsb 0.441 −0.819 0.297 0.006 ** 
Flexible postsc 0.468 −0.758 0.267 0.005 ** 
Blendeda 0.822 −0.196 0.252 0.437 — 
Blendedb 0.729 −0.316 0.300 0.292 — 
Blendedc 0.774 −0.256 0.263 0.331 — 
Flexible postsd 0.605 −0.502 0.318 0.114 — 
Flexible posts or blendeda 0.640 −0.447 0.203 0.028 * 
Flexible posts or blendedb 0.567 −0.568 0.253 0.025 * 
Flexible posts or blendedc 0.602 −0.507 0.212 0.017 * 

—Not statistically significant. 
*Statistically significant at the 0.05 level. 
**Statistically significant at the 0.01 level. 
aBase condition: traditional bicycle lane. 
bBase condition: flush buffered bicycle lane. 
cBase condition: traditional or flush buffered bicycle lane. 
dBase condition: blended vertical element. 

The results indicate that flexible posts separation is linked with a lower risk of bicycle crashes 
compared to the three base conditions without SBLs. Similarly, either flexible posts or blended 
separation is linked with a lower risk for bicycle crashes compared to the three base conditions 
without SBL. Although all the CMFs for blended separation imply bicycle crash reductions, 
none of these CMFs were statistically significant. The comparison between flexible posts and 
blended separation indicated better safety performance for flexible posts, although the statistical 
evidence behind this finding was weak (0.114 p-value for a 0.774 CMF estimate), indicating that 
although these analyses point in the direction that flexi-post could be a better option, both 
treatments might be similarly effective in reducing bicycle crash risk. 

Validation Effort with Additional Data 

As noted previously, the research team assessed the potential use of the two additional datasets 
(Austin and Denver) in this research. The research team used these additional data in 
combination with the multicity models developed earlier to assess the transferability of the 
analysis to other jurisdictions because the sample sizes were limited in these datasets, rendering 
full statistical analysis of each city impractical. 

Analytical Approach 

This section summarizes the research team’s efforts to perform a statistical evaluation of the 
hypothesis that the multi-State model is transferable in general, and that the account for the 
bicycle vertical element is consistent with the data of each additional city. 
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Given the multicity model accounting for vehicle and bicycle exposure, geometry, land use, and 
presence of vertical elements, the product of the regression estimates and the set of variables of 
interest and their covariates define a linear predictor in the link scale. Then, for the new dataset, 
figure 35 provides an estimator of the linear predictor of the multicity model. 

 
Figure 35. Equation. Estimator of the linear predictor. 

Where:  
β = the coefficient of the explanatory variable 
X’ = an individual observation 

= estimate of the linear predictor determined based on distributional parameters of scale 
(i.e., mean) and dispersion calculated using the original multicity model coefficient 
estimates. 

If the data represent a behavior consistent with the multi-State analysis, this estimator should be 
such that, for the new dataset, the response variable for the new dataset is depicted as shown in 
figure 36. 

 
Figure 36. Equation. Response variable in new dataset. 

Where: 
Y = the response variable in the new dataset. 
D = the corresponding conditional distribution of that variable. 

 = the estimates of the distributional parameters of scale (i.e., mean) and dispersion 
calculated using the original multicity model coefficient estimates. 

A test of this condition can be developed by relying on a regression estimation that allows 
additional multiplicative parameters in conjunction with the multicity model estimates under the 
hypothesis that the regression estimates values are statistically equal to 1.0 in the scale of the 
response—or equivalently, statistically equal to 0.0 in the link scale. In this case, this estimation 
would be the natural logarithm function. 

To allow the estimation to better match the data at hand, the dispersion parameter can be allowed 
to be reestimated for each hypothesis test, given that the main interest is the linear predictor from 
the original multicity analysis (i.e., a hypothesis test only on the scale parameter). Therefore, the 
new model specification is such that figure 37 represents the linear predictor for the new dataset. 
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Figure 37. Equation. Linear predictor for the new combined dataset. 

Where: 
= the reestimated linear predictor on the new dataset. 

Xbl = the indicator variable for bicycle lane present. 
Xbb = the indicator variable for bicycle buffer present. 
Xve = the indicator variable for vertical element present. 
ϒ0 = the overall correction for the overall correction for . 
ϒ1, ϒ2, and ϒ3 = the regression coefficients for corrections based on each of the three 

variables coding bicycle lane separation, Xbl, Xbb, and Xve. 

Although it might be interesting to draw conclusions from the individual regression estimates, 
this evaluation focused primarily on the specific linear contrast of ϒ1 and ϒ3 because that 
contrast represents the CMF estimate provided in the prior analysis. 

Analysis and Results 

For the exploratory analysis of the Austin data, the research team did not observe any concerning 
issues regarding the range and trends in the data, compared to the other cities. Table 61 shows 
descriptive statistics of the segments in the dataset. Table 62 summarizes the estimation of the 
validation parameters. 

Table 61. Number of segments by bicycle lane condition per direction in Austin (N = 68). 

Variable 
Bicycle Lane 
(Direction 2) 

Buffered 
(Direction 2) 

Vertical 
Element 

(Direction 2) 
Raised Lane 
(Direction 2) 

Bicycle lane (direction 1) 13 1 0 0 
Buffered (direction 1) 3 13 10 0 
Vertical element 
(direction 1) 

0 1 22 0 

Raised lane (direction 1) 2 0 0 2 
Landscaped buffer 
(direction 1) 

0 1 0 0 

Table 62. Estimates for validation analysis on Austin segments (N = 68). 

Parameter Estimate Standard Error t-value Pr(>|t|) Significance 
ϒ0 1.276 2.35 0.543 0.589 — 
ϒ1 2.286 2.695 0.848 0.4 — 
ϒ2 −2.55 4.32 −0.59 0.557 — 
ϒ3 2.738 2.414 1.134 0.261 — 

—Not statistically significant. 
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Table 62 shows that all parameter estimates are statistically equivalent to 1.0. Therefore, the 
analysis fails to reject the null hypothesis, providing no statistical evidence of a different pattern 
in these data regarding the bicycle lane configuration variables compared to the multicity model. 

For the Denver dataset, the research team observed very different trends than for other cities in 
the exploratory phase, namely, significantly higher counts of crashes in general and broader 
dispersion in the data. The researchers decided to focus on locations that had bicycle lanes only. 
Additionally, the team verified that only 13 locations had vertical elements on both directions, 
whereas 44 additional locations with the presence of vertical elements only had a single direction 
of travel. To still be able to leverage these additional data despite the significant differences, the 
research team modified the estimation to account for locations with traditional bicycle lanes, 
buffered lanes, or configurations with the buffer and vertical elements in either of the two 
directions of travel. Therefore, this assessment produced a new estimate for vertical element. 
Table 63 shows the descriptive statistics for the Denver dataset. 

Table 63. Number of segments by bicycle lane condition per direction in Denver (N = 384). 

Type of Bicycle Lane 
Bicycle Lane 
(Direction 2) 

Buffered 
(Direction 2) 

Vertical Element 
(Direction 2) 

Bicycle lane (direction 1) 231 4 2 
Buffered (direction 1) 0 133 1 
Vertical element (direction 1) 0 0 13 

Next, table 64 shows the parameter estimates and standard errors for this analysis. 

Table 64. Estimates for analysis on Denver segments (N = 384). 

Parameter Estimate Standard Error t-value Pr(>|t|) Significance 
ϒ0 2.5972 1.414 1.837 0.067 ~ 
ϒ1 −0.1118 1.4092 −0.079 0.937 — 
ϒ2 −1.7785 1.4019 −1.269 0.205 — 
ϒ3 −0.9674 1.5065 −0.642 0.521 — 

Table 64 shows that except for the first coefficient, the estimation does not provide evidence of a 
deviation from the multicity model results. 

Table 65 shows the contrast factor estimates for each of these analyses. The contrast factor is not 
statistically different from 1.0 in both cases. 

Table 65. Hypothesis test result for vertical element CMF on Denver and Austin segments. 

City Condition 
Contrast 
Factor Estimate 

Standard 
Error  p-Value Significance 

Austin Vertical element 1.572 0.452 0.865 0.601 — 
Denver Vertical element 0.425 −0.856 0.880 0.331 — 

—Not statistically significant. 
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The following two observations about these findings are relevant and merit consideration: 

• Table 64 shows different specifications of bicycle lane variables for the case of Denver, 
which makes the comparison less direct in that case. 

• The standard errors in both contrasts are comparable, indicating similarly low statistical 
power for the contrast for both datasets. The approximate range contrast factors that 
would produce similarly insignificant results for a standard error of that size is from 
0.20 to 5.70. This range means that the validation effort would only be able to detect a 
significant difference in the contrast for contrast factors outside that range. 

From this exercise, the research team concluded that regarding the safety of bicycle lane vertical 
separation elements, no significant differences existed between the multicity model and any of 
the two cities reviewed for the validation.
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CHAPTER 8. CONCLUSIONS 

The placement of effective design features, such as bicycle lanes, offers a safer and more 
efficient transportation system for all users. Therefore, the goal of this research effort was to 
determine whether constructing SBL facilities would provide additional safety opportunities by 
further reducing crashes beyond those reductions expected to occur along a corridor with basic 
design features, such as a traditional bicycle lane configuration. 

SAFETY EFFECTS 

To assess the safety effects of SBL facilities, the research team reviewed published SBL safety 
literature and found that the use of these facilities has largely occurred in European cities where 
SBL treatments have been applied largely to roads with differing functional purposes. As a 
result, this research explores the safety effects of SBL facilities in the United States. 

Ideally, this assessment should have included known bicycle exposure volumes, just as ADT is 
typically incorporated in MV assessments. However, the implementation of SBLs in the United 
States is in its infancy, and multiyear bicycle counts are limited. In addition, the recent 
COVID-19 pandemic created challenges for research team members to travel to locations and 
conduct additional counts. Ultimately, the bicycle exposure variable, known as the AADB, was 
estimated based on a variety of bicycle count types that included short-term bicycle counts, 
periodic counts that occurred regularly (usually every 2 yr), and a few permanent bicycle count 
stations. The research team selected three of these cities for analysis and developed exposure 
estimates for the three cities (Cambridge; San Francisco; and Seattle). The analysis included sites 
with traditional bicycle lanes, buffered bicycle lanes, and SBLs. The analysis did not include 
shared-use paths or sharrow locations. After the SBL development, the team tested the 
equivalency of the resulting CMFs for two additional cities (Austin and Denver). The Austin 
findings were similar to those from the three study cities, but the Denver findings had some 
differences that could be attributable to seasonal or weather-related conditions. 

RECOMMENDED CMFs 

Ultimately, this research resulted in a series of statistically significant CMF values. The use of a 
CMF requires knowledge of the before treatment (e.g., a traditional bicycle lane) and the after 
treatment (e.g., an SBL). The team found no statistically significant influence on safety for sites 
with a CMF equal to 1.0. A CMF greater than 1.0 indicates that more crashes can be expected, 
whereas a CMF value less than 1.0 indicates a reduction in crashes. Based on the findings 
depicted in table 60, the CMF values shown in table 66 can be used when assessing the potential 
safety influence of adding an SBL to an existing facility. Clearly, these findings indicate that the 
implementation of SBL facilities will help reduce crashes. In addition, a more consistent 
application of flexible posts will provide an additional measure of safety compared to a blend of 
vertical elements along a corridor. 



104 

Table 66. CMFs for converting to an SBL. 

Significance 
Level Before Condition After Condition CMF 

Standard 
Error  

0.01  Traditional bicycle 
lane 

SBL with flexible posts 0.498 0.173 

0.01  Flush buffered 
bicycle lane 

SBL with flexible posts 0.441 0.297 

0.01  Traditional or flush 
buffered bicycle lane 

SBL with flexible posts 0.468 0.267 

0.05  Traditional bicycle 
lane 

SBL with blend of flexible 
posts and other vertical 
elements 

0.640 0.203 

0.05  Flush buffered 
bicycle lane 

SBL with blend of flexible 
posts and other vertical 
elements 

0.567 0.253 

0.05  Traditional or flush 
buffered bicycle lane 

SBL with blend of flexible 
posts and other vertical 
elements 

0.602 0.212 

FUTURE RESEARCH 

The research team encountered two significant challenges for this effort. First, the limited access 
to bicycle count data and the impact of the historic pandemic with a typical bicycle usage 
rendered acquiring comprehensive bicycle count information infeasible. Fortunately, this bicycle 
issue is a challenge that should resolve itself over time. Currently, several initiatives are 
underway to bolster bicycle count information for many cities and States. Consequently, as the 
SBL facilities continue to be implemented and the bicycle exposure data collection improves, the 
development of consistent and reliable bicycle exposure numbers can be expected to improve. 

The second challenge is the inconsistent nature of SBL applications, particularly at approaches to 
intersections. Initially, the research team hoped to develop CMFs for segments and intersections, 
but their attempts to model intersections and/or entire corridors were unsuccessful. 
Consequently, the team focused on developing robust CMFs for segments. Future work may be 
to conduct research that estimates the safety effect of the various types of SBL-to-intersection 
transitions. 

This report does demonstrate that as bicycle facilities continue to evolve in the United States, a 
better understanding of how expanded configuration types will influence crashes will be needed. 
However, the team did determine from this research that SBLs do provide a clear safety benefit 
and reduce crashes by as much as 50 percent or more at segment locations. 
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